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Land cover mapping at Theia

Theia is the French Land Data Center
e Created at the end of 2012 by 9 French public institutions involved in Earth observation and environmental
sciences
e Facilitate the use of images resulting from the spatial observation of continental surfaces

e Three pillars
1. a Spatial Data Infrastructure (SDI) distributed among several actors,
2. a network of Scientific Expertise Centers (SEC),
3. and Regional Theia Animation Centers (RAN)
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Land cover mapping at Theia

Theia is the French Land Data Center
e Created at the end of 2012 by 9 French public institutions involved in Earth observation and environmental
sciences
e Facilitate the use of images resulting from the spatial observation of continental surfaces

e Three pillars

1. a Spatial Data Infrastructure (SDI) distributed among several actors,
2. a network of Scientific Expertise Centers (SEC),
3. and Regional Theia Animation Centers (RAN)

Land Cover SEC
e Define and develop automatic algorithms to produce land cover maps using satellite imagery

e Production of national maps (mainland France then Europe?)
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Timeline of the productions

SPOT Takes

2016 2017 2018 2019 year
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Timeline of the productions
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Timeline of the productions

Nomenclature Extension
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Nomenclature

e Annual Crops

1. Summer Crops
2. Winter Crops
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Nomenclature

e Annual Crops
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Nomenclature

e Annual Crops

1. Summer Crops
2. Winter Crops

Perennial Crops

3. Intensive grasslands
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5. Orchards
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Low natural vegetation
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Nomenclature

e Annual Crops e Artificial
1. Summer Crops 10. Continuous urban
2. Winter Crops 11. Discontinuous urban
e Perennial Crops 12. Commercial and industrial units

3. Intensive grasslands 13. Roads and asphalt surfaces

4. Vineyards
5. Orchards

e Forests

6. Broad-leaved
7. Conifer

Low natural vegetation

8. Natural grasslands and pastures
9. Woody moorlands
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Nomenclature

e Artificial
10. Continuous urban
11. Discontinuous urban
12. Commercial and industrial units
13. Roads and asphalt surfaces
e Natural mineral surfaces
14. Bare rocks
15. Sand and dunes
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Annual Crops

1. Summer Crops
2. Winter Crops

Perennial Crops

3. Intensive grasslands
4. Vineyards
5. Orchards

Forests

6. Broad-leaved
7. Conifer

Low natural vegetation

8. Natural grasslands and pastures
9. Woody moorlands
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Nomenclature

Artificial
10. Continuous urban
11. Discontinuous urban

12. Commercial and industrial units
13. Roads and asphalt surfaces

e Natural mineral surfaces
14. Bare rocks

15. Sand and dunes
Other

16. Water bodies
17. Glaciers and eternal snow

e Extension to 23 classes

e Summer Crops: Soybean, Sunflower, Corn, Rice,
Root/tuber

e Winter Crops: Rapeseed, Straw cereals, Protein
crops
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Machine Learning

Supervised classification
e Pixel based, time profiles of reflectances and spectral indices
o All available images (regardless of cloud cover) are used

e Random Forests: fast, robust to label noise, state of the art for high dimensional non contextual

classification

Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., & Rodes, I., Operational high resolution land cover map production at the country scale
using satellite image time series, Remote Sensing, 9(1), 95 (2017). http://dx.doi.org/10.3390/rs901009

10
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Machine Learning

Supervised classification
e Pixel based, time profiles of reflectances and spectral indices
o All available images (regardless of cloud cover) are used

e Random Forests: fast, robust to label noise, state of the art for high dimensional non contextual
classification

Reference data

o Annual updates over 543,939km? can not rely on field surveys
e Fusion of out-of-date and heterogeneous DBs

e Corine Land Cover by default

e LPIS for agriculture

e National Topo Data Base for forests
e Urban Atlas for artificial surfaces

Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., & Rodes, I., Operational high resolution land cover map production at the country scale

using satellite image time series, Remote Sensing, 9(1), 95 (2017). http://dx.doi.org/10.3390/rs901009
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Dealing with irregular temporal sampling

The problem

One solution

e Use cloud and cloud-shadow
masks to flag invalid pixels

e Temporal gap-filling by
linear interpolation is enough
for classification purposes

Interpolation allows us to
resample onto a regular time
grid

e All the pixels have now the
same "virtual dates"
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Eco-climatic stratification

10
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Eco-climatic stratification

e Use one different classifier
for each climatic region

e Up to 5% accuracy increase
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Additional products

Validity
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Additional products

Validity Confidence
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Additional products

Validity Confidence Vector data

A
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iota2

Docs » Welcome to ota2's documentation View page source

to iota2's ion!

“This short documentation was witten to quickly help users to run iota2, and developers
o in development.

Table of contents

Bommasecnabe

B Roouens
“The source code for fota2 is hosted at https:/framagit. org/iota2-project/iota2)
2 © Copyright 2015-2019, CESBIO Revision 653€a5bA
Built with Sphinx using a theme provided by Read the Docs.

e Free software: GNU Affero General Public License v3.0.

’5 https://framagit.org/iota2-project/iota2.git
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Classical Machine Learning metrics

Confusion matrix
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Independent sources

Ground surveys, other DBs

- score  mm precision W Rappel
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Independent sources

Pros & cons

Ground surveys, other DBs

- score  mm precision W Rappel
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Data is clean and accurate

Provided by users

Different nomenclature

Covers a small part of the territory




Independent expert validation

e SIRS is the Corine Land Cover producer for France
e In charge of the validation of several Copernicus Land Monitoring Service products

e High Resolution Layers
e Urban Atlas
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Independent expert validation

e SIRS is the Corine Land Cover producer for France
e In charge of the validation of several Copernicus Land Monitoring Service products

e High Resolution Layers
e Urban Atlas

e Validation protocol on 1428 points over Metropolitan France

1. Blind interpretation without knowledge of the S2 map
2. Plausibility analysis between operator’s interpretation and S2 map
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Independent expert validation

e SIRS is the Corine Land Cover producer for France
e In charge of the validation of several Copernicus Land Monitoring Service products

e High Resolution Layers
e Urban Atlas

e Validation protocol on 1428 points over Metropolitan France

1. Blind interpretation without knowledge of the S2 map
2. Plausibility analysis between operator’s interpretation and S2 map

e The map reaches the acceptability threshold for this kind of products (>85%)

e 81.4 +/- 3.68% (blind)
e 91.7 4+/- 1.25% (plausibility)

e Validation report: https://frama.link/oso-sirs-validation

g\ FIO
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Main limitations and user feedback




Poor performances on some classes

Natural vegetation

e Forest — Moorland — Grassland — Bare rock
e a continuous gradient
e the classes are very similar

e the reference data imposes arbitrary boundaries
depending on the area and the context.
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Poor performances on some classes

Urban areas

Natural vegetation
e Forest — Moorland — Grassland — Bare rock
e a continuous gradient
o the classes are very similar

e the reference data imposes arbitrary boundaries
depending on the area and the context.

e Contextual classification is needed
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11 - Continuous urban fabric——————{111 - Continuous urban fabric-————{1111 - Continuous urban fabric——{11111 - Ce urban fabric|
12 - Discontinuous urban fabric 121 - Di urban fabric———{1211 - D urban fabric—{12111 - Di i urban fabric|
131 - Industrial or commercial unitsk——{1311 - Industrial or commercial units}{13111 - Industrial or commercial units)

r Y 21121 - Winter straw cereals|
211 - Annual winter crop: {2112 - Straw )

21122 - Spring straw cereals
2113 - Spring protein crops) 21131 - Spring protein crops)

2121 - Summer oilseeds|

13 - Industrial comm. and transport|

132 - Road and parking areas———1321 - Road and parking areas|

21 - Annual crops|

21212 - Sunflower
21221 - Grain com
21222 - Silage corn

212 - Annual summer crops

2122 - Summer cereals

2 - Agricultural areas)

21231 - Sugar beet

——{21232 - Potato]

2123 - Root and tuber

Nomenclature|

221 - Intensive grasslands} {2211 - Intensive grasslands} {22111 - Intensive grasslands)
(22 - Permanent crop: {222 - Orchards} {2221 - Orchards} {22211 - Orchards)
223 - Vineyard: {2231 - Vineyards} {22311 - Vineyards)
3 — (311 - Broad-leaved forest] 3111 - Broad-leaved forest—————{(31111 - Broad-leaved forest]
ore:

312 - Coniferous forest] 3121 - Coniferous forest——————{31211 - Coniferous forest)
32 - Scrub and/or

e P s o 321 - Natural grasslands} {3211 - Natural grasslands} {32111 - Natural grasslands|
_ vegetation associations
areas

322 - Woody moorlands 3221 - Woody moorlands) 32211 - Woody moorlands)
331 - Bare rock 3311 - Bare rock 33111 - Bare rock
33 - Open spaces with little) 332 - Beaches, dunes and 3321 - Beaches, dunes and
or no vegetation sand plains sand plains 33211 - Beaches, dunes and sand plains)
333 - Glaciers and 3331 - Glaciers and
perpetual snow perpetual snow 33311 - Glaciers and snow|
4 - Wetland: 41 - land: 411 - Wetland: 4111 - 41112 - Marshes|

141113 - Inter-tidal flats
5 - Water bodi 1

= 11 - 111 - 1111 - Water




Suitability to change detection

Annual maps
e Invite users to compute pixel-wise differences
e LC changes smaller than 5%, but 10% error in the map

e Errors are not random: transitions between similar classes

J. Inglada et al. France's land-cover at 10 m - LPS 2019

[2019-05-16 Thu]

15



Suitability to change detection

Annual maps

e Invite users to compute pixel-wise differences
e LC changes smaller than 5%, but 10% error in the map

e Errors are not random: transitions between similar classes

Solutions?

e Confidence maps can be used to filter the detected changes

e Distribute probability maps for each class

o 777

J. Inglada et al. France's land-cover at 10 m - LPS 2019
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What's next




Contextual classification

Current limitations of CNN

e Need for dense annotations
e Computationally intensive:

e Accuracy per Joule? / Carbon footprint of the
map!
e Accuracy per € in your cloud provider bill - - -
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Contextual classification

Current limitations of CNN

e Need for dense annotations
e Computationally intensive:

e Accuracy per Joule? / Carbon footprint of the
map!
e Accuracy per € in your cloud provider bill - - -

Comparing Deep Convolutional Neural Networks To
Handcrafted Contextual Features For Large Scale Land
Cover Mapping

Thursday, May 16, 2019
5:20 PM - 7:00 PM
South Hall - Floor 0

Poster Presentation Area C - Board 334
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Contextual classification

Current limitations of CNN

e Need for dense annotations
e Computationally intensive:

e Accuracy per Joule? / Carbon footprint of the
map!
e Accuracy per € in your cloud provider bill - - -

Comparing Deep Convolutional Neural Networks To
Handcrafted Contextual Features For Large Scale Land
Cover Mapping

Thursday, May 16, 2019
5:20 PM - 7:00 PM
South Hall - Floor 0

Poster Presentation Area C - Board 334

10

Context

-
ok

Auto-Context
BT

RF

Kappa Yy

[T317DN

RF (pixel)

89,53 %

91,87 %

Ac

89,42%
89,82%

92,19 %
92,49 %

MLP_Unet
[T30TXQ

82,87%

90,61%

|RF (pixel)
AC

86,90 %

93.31%

MLP_Unet

87,74%

93,77 %

T3LTGK

64,24%

71,01%

|RF (pixel)
AC

66,66 %

73.10 %

67,20 %

73,67 %

Conclusions
— Similar result in terms of Overall Accuracy
— CNN provides finer disctinction in urban

areas
- Geometry of the CNN result s blurry
- Computation times are much slower

J. Inglada et al. France's land-cover at 10 m - LPS 2019
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84,70 % 88,70 % RF ~25h
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Reducing the dependence on up-to-date training data

Leverage past image time series
e Reference data comes from existing DBs
e Train classifiers on past images and outdated references

e Perform model fusion

e Apply Domain Adaptation techniques (Optimal Transport)

Tardy, B., Inglada, J., & Michel, J., Fusion approaches for land cover map production using high resolution image time series without reference data
Sensing, 9(11), 1151 (2017). http://dx.doi.org/10.3390/rs9111151

of the corresponding period, R

Tardy, B., Inglada, J., & Michel, J., Assessment of optimal transport for operational land-cover mapping using high-resolution satellite images time

Sensing, 11(9), 1047 (2019). http://dx.doi.org/10.3390/rs11091047

series without reference data of the ing period, R
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Other improvements

Using several years of images
e But keeping yearly updates
e Better description of long term trends
e Better characterization of similar classes

e But huge data volumes!
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Other improvements

Using several years of images
e But keeping yearly updates
e Better description of long term trends
e Better characterization of similar classes

e But huge data volumes!

Sentinel-1
e Complementary with optical measures — better discrimination
e Increase data availability in cloudy areas
e But huge data volumes

e Experiments show small improvements so far
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