Mapping France's land-cover at 10 m every year. Lessons learned and future improvements.

Jordi INGLADA, Arthur VINCENT, Vincent THIERION [2019-05-16 Thu]

Outline

Intro
 Methodology
 Product validation
 Main limitations and user feedback
 What's next

https://frama.link/lps19

jordi.inglada@cesbio.eu

Creative Commons Attribution-ShareAlike 4.0 Unported License

Get the slides

Intro

Land cover mapping at Theia

Theia is the French Land Data Center

- Created at the end of 2012 by 9 French public institutions involved in Earth observation and environmental sciences
- Facilitate the use of images resulting from the spatial observation of continental surfaces
- Three pillars
 - 1. a Spatial Data Infrastructure (SDI) distributed among several actors,
 - 2. a network of Scientific Expertise Centers (SEC),
 - 3. and Regional Theia Animation Centers (RAN)

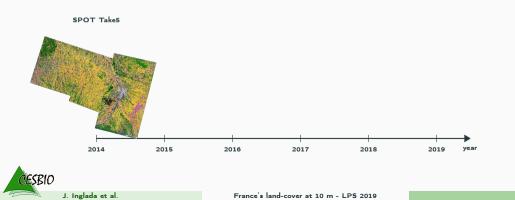
Land cover mapping at Theia

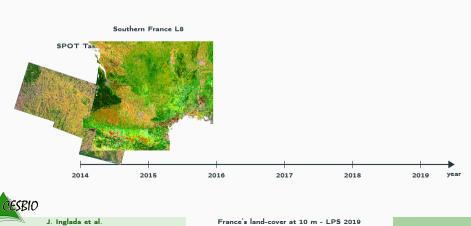
Theia is the French Land Data Center

- Created at the end of 2012 by 9 French public institutions involved in Earth observation and environmental sciences
- Facilitate the use of images resulting from the spatial observation of continental surfaces
- Three pillars
 - 1. a Spatial Data Infrastructure (SDI) distributed among several actors,
 - 2. a network of Scientific Expertise Centers (SEC),
 - 3. and Regional Theia Animation Centers (RAN)

Land Cover SEC

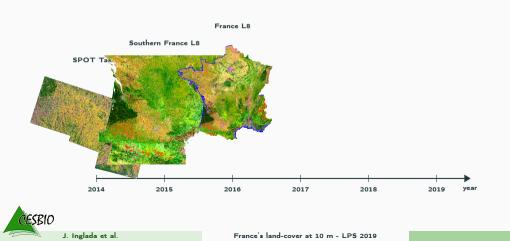
- Define and develop automatic algorithms to produce land cover maps using satellite imagery
- Production of national maps (mainland France then Europe?)



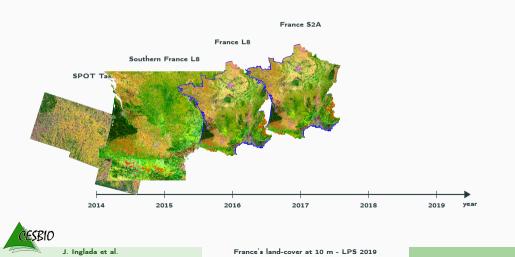


[2019-05-16 Thu] 3

France's land-cover at 10 m - LPS 2019



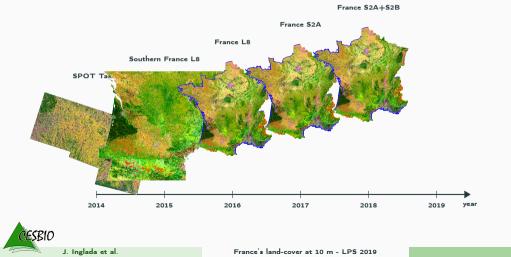
[2019-05-16 Thu] 3

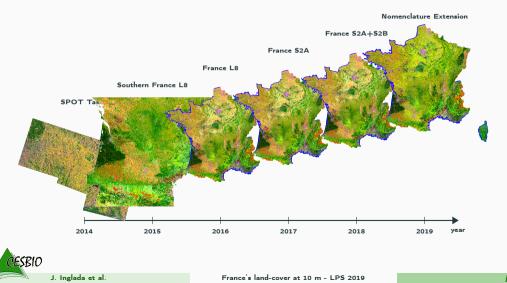


[2019-05-16 Thu] 3

[2019-05-16 Thu]

3





[2019-05-16 Thu] 3

- Annual Crops
 - 1. Summer Crops
 - 2. Winter Crops

- Annual Crops
 - 1. Summer Crops
 - 2. Winter Crops
- Perennial Crops
 - 3. Intensive grasslands
 - 4. Vineyards
 - 5. Orchards

- Annual Crops
 - 1. Summer Crops
 - 2. Winter Crops
- Perennial Crops
 - 3. Intensive grasslands
 - 4. Vineyards
 - 5. Orchards
- Forests
 - 6. Broad-leaved
 - 7. Conifer

- Annual Crops
 - 1. Summer Crops
 - 2. Winter Crops
- Perennial Crops
 - 3. Intensive grasslands
 - 4. Vineyards
 - 5. Orchards
- Forests
 - 6. Broad-leaved
 - 7. Conifer
- Low natural vegetation
 - 8. Natural grasslands and pastures
 - 9. Woody moorlands

- Annual Crops
 - 1. Summer Crops
 - 2. Winter Crops
- Perennial Crops
 - 3. Intensive grasslands
 - 4. Vineyards
 - 5. Orchards
- Forests
 - 6. Broad-leaved
 - 7. Conifer
- Low natural vegetation
 - 8. Natural grasslands and pastures
 - 9. Woody moorlands

Artificial

- 10. Continuous urban
- 11. Discontinuous urban
- 12. Commercial and industrial units
- 13. Roads and asphalt surfaces

- Annual Crops
 - 1. Summer Crops
 - 2. Winter Crops
- Perennial Crops
 - 3. Intensive grasslands
 - 4. Vineyards
 - 5. Orchards
- Forests
 - 6. Broad-leaved
 - 7. Conifer
- Low natural vegetation
 - 8. Natural grasslands and pastures
 - 9. Woody moorlands

Artificial

- 10. Continuous urban
- 11. Discontinuous urban
- 12. Commercial and industrial units
- 13. Roads and asphalt surfaces
- Natural mineral surfaces
 - 14. Bare rocks
 - 15. Sand and dunes

- Annual Crops
 - 1. Summer Crops
 - 2. Winter Crops
- Perennial Crops
 - 3. Intensive grasslands
 - 4. Vineyards
 - 5. Orchards
- Forests
 - 6. Broad-leaved
 - 7. Conifer
- Low natural vegetation
 - 8. Natural grasslands and pastures
 - 9. Woody moorlands

- Artificial
 - 10. Continuous urban
 - 11. Discontinuous urban
 - 12. Commercial and industrial units
 - 13. Roads and asphalt surfaces
- Natural mineral surfaces
 - 14. Bare rocks
 - 15. Sand and dunes
- Other
 - 16. Water bodies
 - 17. Glaciers and eternal snow

- Annual Crops
 - 1. Summer Crops
 - 2. Winter Crops
- Perennial Crops
 - 3. Intensive grasslands
 - 4. Vineyards
 - 5. Orchards
- Forests
 - 6. Broad-leaved
 - 7. Conifer
- Low natural vegetation
 - 8. Natural grasslands and pastures
 - 9. Woody moorlands

Artificial

- 10. Continuous urban
- 11. Discontinuous urban
- 12. Commercial and industrial units
- 13. Roads and asphalt surfaces
- Natural mineral surfaces
 - 14. Bare rocks
 - 15. Sand and dunes
- Other
 - 16. Water bodies
 - 17. Glaciers and eternal snow
- Extension to 23 classes
 - Summer Crops: Soybean, Sunflower, Corn, Rice, Root/tuber
 - Winter Crops: Rapeseed, Straw cereals, Protein crops

Methodology

Machine Learning

Supervised classification

- Pixel based, time profiles of reflectances and spectral indices
- All available images (regardless of cloud cover) are used
- Random Forests: fast, robust to label noise, state of the art for high dimensional non contextual classification

Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., & Rodes, I., Operational high resolution land cover map production at the country scale

using satellite image time series, Remote Sensing, 9(1), 95 (2017). http://dx.doi.org/10.3390/rs901009

J. Inglada et al.

CESBID

France's land-cover at 10 m - LPS 2019

Machine Learning

Supervised classification

- Pixel based, time profiles of reflectances and spectral indices
- All available images (regardless of cloud cover) are used
- Random Forests: fast, robust to label noise, state of the art for high dimensional non contextual classification

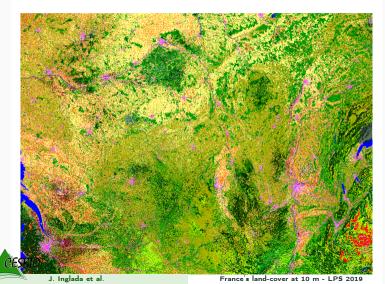
Reference data

- Annual updates over 543, 939km² can not rely on field surveys
- Fusion of out-of-date and heterogeneous DBs
 - Corine Land Cover by default
 - LPIS for agriculture
 - National Topo Data Base for forests
 - Urban Atlas for artificial surfaces

Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., & Rodes, I., Operational high resolution land cover map production at the country scale

using satellite image time series, Remote Sensing, 9(1), 95 (2017). http://dx.doi.org/10.3390/rs901009

PESBID



The problem

One solution

- Use cloud and cloud-shadow masks to flag invalid pixels
- Temporal gap-filling by linear interpolation is enough for classification purposes
- Interpolation allows us to resample onto a regular time grid
- All the pixels have now the same "virtual dates"

Eco-climatic stratification

Eco-climatic stratification

Eco-climatic stratification



- Use one different classifier for each climatic region
- Up to 5% accuracy increase

Additional products

Validity

J. Inglada et al.

Additional products

Validity

Confidence

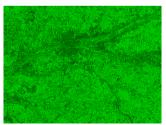
J. Inglada et al.

Additional products

Validity

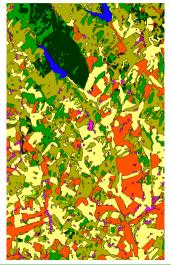
Confidence

J. Inglada et al.



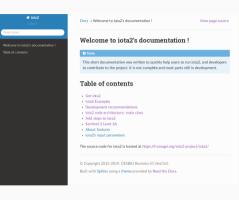
France's land-cover at 10 m - LPS 2019

Vector data



iota2

2 inter2	* intellorquet + * intel + Repeatery			
Project	develop \sim lota2 /	+ v	History Q. Find Re	Web 10£ 0 v
Repository	ENH : configuration file para Arthur VMCENT exthored 2	eneter 'remove_outputPath' is now mandatory days ago		d8b12897 🕓
Commits	Name	Last commit		Last update
Branches	Publishing	DDC : Wrong class label in and file descriptor		1 year app
Тара	in sec	change permissions		4 months ago
Contributors	anarta	Modification des droits d'accès au code de la chaine		3 years ago
Graph Compare	in config	DDC : documentation update		3 days app
Chans	in data	ADD: Add reference data for Unitests of nonvencietur		2 months ago
(mark	 in dec	DOC : add iota2's input parameters documentation to		3 weeks app
	 In include	BUG : iota2FeatureEstraction division by 0 manage in		11 months ago
Marge Requests	in scripts	ENH : configuration file parameter 'remove_outputPet	h.	2 days ago
CI/ CD	in test	ODMP: Missing files to compile and test new app		1 year ago
Operationa	D gitignore	Marga branch 'der' of https://framagit.org/thierion//		1 year ago
Wiki	CMakeLists.txt	REFAD : update		1 year ago
Snippets	D LICENSE	License change		2 years ago
9 Seriege	READER and	Update READAR.rvd		1 month age
	🕑 otb-module.cmake	COMP: remove macro to require c++11		7 months ago
	E REALONE and			
	Phastracture pour l'Occupation Documentation: Documentation	des sols per Traitement Autorsatique Incorporent les Orle on readmetiocs lo	o Toobox Applications - Io	a ¹



• Free software: GNU Affero General Public License v3.0.

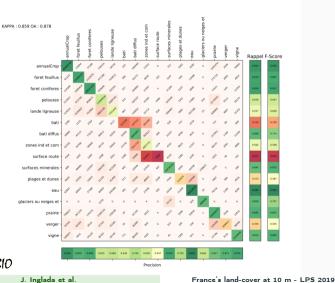
```
https://framagit.org/iota2-project/iota2.git
@E$BIO
```

```
J. Inglada et al.
```

Product validation

Classical Machine Learning metrics

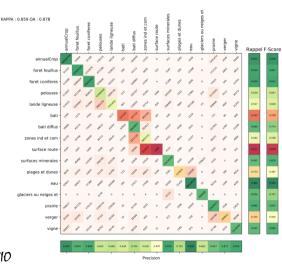
Confusion matrix

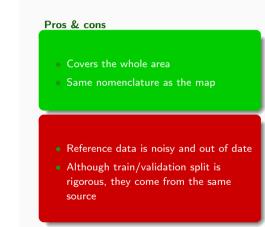


Classical Machine Learning metrics

Confusion matrix

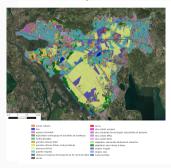
J. Inglada et al.

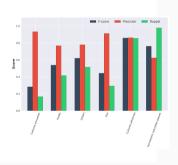




Independent sources

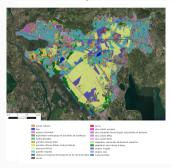
Ground surveys, other DBs

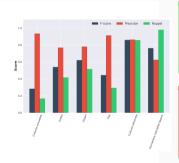




Independent sources

Ground surveys, other DBs





Pros & cons

- Data is clean and accurate
- Provided by users

- Different nomenclature
- Covers a small part of the territory

Independent expert validation

- SIRS is the Corine Land Cover producer for France
- In charge of the validation of several Copernicus Land Monitoring Service products
 - High Resolution Layers
 - Urban Atlas

Independent expert validation

- SIRS is the Corine Land Cover producer for France
- In charge of the validation of several Copernicus Land Monitoring Service products
 - High Resolution Layers
 - Urban Atlas
- Validation protocol on 1428 points over Metropolitan France
 - 1. Blind interpretation without knowledge of the S2 map
 - 2. Plausibility analysis between operator's interpretation and S2 map

Independent expert validation

- SIRS is the Corine Land Cover producer for France
- In charge of the validation of several Copernicus Land Monitoring Service products
 - High Resolution Layers
 - Urban Atlas
- Validation protocol on 1428 points over Metropolitan France
 - 1. Blind interpretation without knowledge of the S2 map
 - 2. Plausibility analysis between operator's interpretation and S2 map
- The map reaches the acceptability threshold for this kind of products (>85%)
 - 81.4 +/- 3.68% (blind)
 - 91.7 +/- 1.25% (plausibility)
- Validation report: https://frama.link/oso-sirs-validation

Main limitations and user feedback

Natural vegetation

- $\bullet~\mathsf{Forest} \to \mathsf{Moorland} \to \mathsf{Grassland} \to \mathsf{Bare}~\mathsf{rock}$
 - a continuous gradient
- the classes are very similar
- the reference data imposes arbitrary boundaries depending on the area and the context.

Poor performances on some classes

Urban areas

Natural vegetation

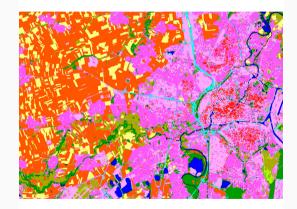
- $\bullet~\mathsf{Forest} \to \mathsf{Moorland} \to \mathsf{Grassland} \to \mathsf{Bare}~\mathsf{rock}$
 - a continuous gradient
- the classes are very similar
- the reference data imposes arbitrary boundaries depending on the area and the context.

Poor performances on some classes

Natural vegetation

- $\bullet~\mathsf{Forest} \to \mathsf{Moorland} \to \mathsf{Grassland} \to \mathsf{Bare}~\mathsf{rock}$
 - a continuous gradient
- the classes are very similar
- the reference data imposes arbitrary boundaries depending on the area and the context.

Urban areas

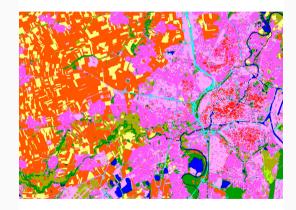


Poor performances on some classes

Natural vegetation

- $\bullet~\mathsf{Forest} \to \mathsf{Moorland} \to \mathsf{Grassland} \to \mathsf{Bare}~\mathsf{rock}$
 - a continuous gradient
- the classes are very similar
- the reference data imposes arbitrary boundaries depending on the area and the context.

Urban areas



• Contextual classification is needed

France's land-cover at 10 m - LPS 2019

Suitability to change detection

Annual maps

- Invite users to compute pixel-wise differences
- LC changes smaller than 5%, but 10% error in the map
- Errors are not random: transitions between similar classes

Suitability to change detection

Annual maps

- Invite users to compute pixel-wise differences
- LC changes smaller than 5%, but 10% error in the map
- Errors are not random: transitions between similar classes

Solutions?

- Confidence maps can be used to filter the detected changes
- Distribute probability maps for each class
- ???

What's next

Current limitations of CNN

- Need for dense annotations
- Computationally intensive:
 - Accuracy per Joule? / Carbon footprint of the map!
 - Accuracy per € in your cloud provider bill · · ·

Current limitations of CNN

- Need for dense annotations
- Computationally intensive:
 - Accuracy per Joule? / Carbon footprint of the map!
 - Accuracy per \in in your cloud provider bill \cdots

Comparing Deep Convolutional Neural Networks To Handcrafted Contextual Features For Large Scale Land Cover Mapping

Thursday, May 16, 2019

5:20 PM - 7:00 PM

South Hall - Floor 0

Poster Presentation Area C - Board 334

Contextual classification

Current limitations of CNN

- Need for dense annotations
- Computationally intensive:
 - Accuracy per Joule? / Carbon footprint of the map!
 - Accuracy per € in your cloud provider bill · · ·

Comparing Deep Convolutional Neural Networks To Handcrafted Contextual Features For Large Scale Land Cover Mapping

Thursday, May 16, 2019

5:20 PM - 7:00 PM

South Hall - Floor 0

Poster Presentation Area C - Board 334

Auto Context RF

	MLP-U	inet	
No.	1997 C	1	Sug
1. A. P.	<u></u>	12.98	1
	<u> </u>		12
1967		and the second	
698 ()	1000	۲ کې	
	* **		
and and			

Conclusions

- Similar result in terms of Overall Accuracy
- CNN provides finer disctinction in urban areas
- Geometry of the CNN result is blurry
- Computation times are much slower

Method	Training time/CPU	
RF	≈25h	
Auto-Context	≈80h	
MLP-Unet	≈3300h	

ESBID

Reducing the dependence on up-to-date training data

Leverage past image time series

- Reference data comes from existing DBs
- Train classifiers on past images and outdated references
- Perform model fusion
- Apply Domain Adaptation techniques (Optimal Transport)

Tardy, B., Inglada, J., & Michel, J., Fusion approaches for land cover map production using high resolution image time series without reference data of the corresponding period, Remote Sensing, 9(11), 1151 (2017). http://dx.doi.org/10.3390/rs9111151

Tardy, B., Inglada, J., & Michel, J., Assessment of optimal transport for operational land-cover mapping using high-resolution satellite images time series without reference data of the mapping period, Remote Sensing, 11(9), 1047 (2019). http://dx.doi.org/10.3390/rs11091047

Other improvements

Using several years of images

- But keeping yearly updates
- Better description of long term trends
- Better characterization of similar classes
- But huge data volumes!

Other improvements

Using several years of images

- But keeping yearly updates
- Better description of long term trends
- Better characterization of similar classes
- But huge data volumes!

Sentinel-1

- Complementary with optical measures \rightarrow better discrimination
- Increase data availability in cloudy areas
- But huge data volumes
- Experiments show small improvements so far

Q&A

https://frama.link/lps19

jordi.inglada@cesbio.eu

Creative Commons Attribution-ShareAlike 4.0 Unported License

