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Résumé
L’utilisation des images d’observation de la Terre dans un contexte opérationnel impose des
contraintes fortes d’automatisation et de temps de traitement.

La transformation de la matrice de pixels initiale en carte d’occupation des sols et/ou carte
de changements constitue une chaîne de production d’informations dont les différents élé-
ments (corrections géométriques et radiométriques, extraction de primitives, reconnaissance
d’objets, détection de changements, etc.) peuvent être optimisés.

Les travaux présentés apportent des contributions aux différentes étapes de cette chaîne en
s’appuyant sur les approches suivantes :

– mesures de similarité statistiques, pour la mise en correspondance d’images et la détec-
tion de changements ;

– méthodes de classification supervisée à noyaux pour la reconnaissance d’objets et la dé-
tection de changements ;

– raisonnement spatial pour la reconnaissance d’objets et l’interprétation de scènes.
Mots clés : imagerie satellitaire, mesures de similarité, classification d’images, reconnaissance
d’objets, détection de changements

Abstract
The use of Earth observation imagery in operational contexts introduces several strong con-
straints in terms of automation and processing time.

The transformation of the initial pixel matrix into a land cover or a change detection map
can be seen as an information production chain whose different stages (geometric and radio-
metric corrections, feature extraction, object recognition, change detection, etc.) can be opti-
mised.

The work presented in this document bring new contributions to the different blocks of this
chain by using the following approaches :

– statistical similarity measures for image registration and change detection ;
– kernel-based supervised classification methods for object recognition and change detec-

tion ;
– spatial reasoning for object recognition and scene interpretation.

Keywords : satellite imagery, similarity measures, image classification, object recognition,
change detection.
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1 Introduction

Ce mémoire synthétise les travaux de recherche que j’ai mené au CNES depuis mon arrivée
en octobre 2000. Ces travaux ont été guidés par 2 axes principaux.

Le premier axe concerne l’utilisation opérationnelle des images satellite pour l’aide à la
gestion de crise suite à des catastrophes majeures. On constate qu’il s’agit d’un axe applicatif –
avec un ensemble de contraintes qui seront détaillées par la suite – ce qui peut sembler étrange
pour des recherches menées au CNES.

Le deuxième axe concerne le travail sur l’exploitation d’images à haute et très haute ré-
solution, soit dans un cadre de valorisation de systèmes spatiaux existants – Spot 5 – ou
dans un cadre de préparation à l’utilisation de données de systèmes en développement – Or-
feo/Pléiades et plus récemment Venµs et Sentinelle-2. Ces axes sont plus classiques dans le
périmètre des compétences du CNES.
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1.1 Risques et catastrophes majeures

1.1.1 La Charte et le rôle de PM

Peu avant mon arrivée au Cnes pour un post-doc, le Cnes et l’Agence spatiale européenne
ont signé en avril 2000 une charte qui avait comme objectif de rendre disponible l’accès à des
données satellite pour les services d’aide et de secours :

La Charte internationale vise à offrir un système unifié d’acquisition et de livraison des données
satellites dans les cas de catastrophes d’origine naturelle ou humaine par l’entremise d’utilisateurs
autorisés. Chaque agence membre s’est engagée à fournir des ressources à l’appui de la Charte et con-
tribue ainsi à atténuer les répercussions de telles catastrophes sur la vie des gens et sur la propriété. 1

Le Cnes et l’ESA ont été ensuite rejoints par l’Agence spatiale canadienne, la NOAA (USA)
et l’ISRO (Inde). La Charte compte aujourd’hui 10 membres.

Les procédures pour l’activation de la Charte par des utilisateurs autorisés ont été créées
dès le début. Il en a été de même pour ce qui concerne la définition des responsabilités des
différents acteurs ainsi que pour les mécanismes de demande d’acquisition des différents satel-
lites disponibles. En revanche, rien n’était prévu pour ce qui concernait l’utilisation des images
acquises. Les utilisateurs finaux étant des opérationnels de la gestion des crises, la mise à dis-
position d’images satellites brutes s’est avérée peu adaptée dès la première activation.

J’ai eu l’occasion de participer aux côtés du chef de projet de la première activation de la
Charte, Francesco Sarti, lors des 2 tremblements de terre de janvier 2001 au Salvador. Dès
nos premiers échanges téléphoniques avec les équipes de la Sécurité civile française envoyés
sur place, nous avons pu constater l’abîme à combler entre la matrice de pixels (qui plus est,
radar !) que nous avions sur nos écrans et le besoin d’information précise du pompier sur le
terrain.

Pour cette activation nous avons tant bien que mal réussi à produire des cartes de change-
ments avant-après mais de façon artisanale et sans beaucoup de confiance sur les résultats.
Pour les activations suivantes, nous nous sommes appuyé sur les spécialistes de l’interprétation
d’images du Sertit. Ceci a permis de livrer des produits de meilleure qualité, mais beaucoup
de questions restaient à résoudre pour rendre ces images vraiment utiles sur le terrain :

1. Quelle est l’information utile pour l’opérationnel ? Il s’agit ici de la définition des pro-
duits cartographiques à produire. Je n’ai pas travaillé sur ce sujet.

2. Comment standardiser les procédures de façon à les rendre les moins dépendantes pos-
sible de l’interprète intervenu ou de la donnée utilisée.

3. Comment réduire les délais de mise à disposition de l’information ?

Ces questions ont motivé de développement d’outils ainsi que la définition d’axes de recherche.

1.1.2 Le développement d’outils

Une façon de générer des produits – cartes de dégâts – reproductibles et dans des délais
réduits était d’automatiser les traitements. Ceci nous a motivé à proposer ce qui a ensuite été

1. http ://www.disasterscharter.org/
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la Chaîne Risques et dont j’ai programmé une première maquette pendant mon postdoc. Le
Cnes a ensuite alloué un budget qui nous a permis d’industrialiser l’outil qui a ensuite fait
objet de validation et de nouveaux développements dans le cadre de projets européens.

Cette chaîne avait une architecture très simple composée de 3 blocs :

1. La mise en géométrie des images (recalage et ortho-rectification)

2. La détection de changements

3. L’interprétation des changements

L’objectif était de rendre les 2 premières étapes automatiques. La division QTIS (Qualité et
traitement de l’imagerie spatiale) avait des outils qui permettaient de réaliser quasi complète-
ment la partie géométrique. En revanche rien n’existait pour la détection de changements,
même si certains croyaient qu’une simple différence d’images pouvait être utilisée pour cette
détection.

Nous n’avons jamais vraiment envisagé d’automatiser l’interprétation des changements,
mais nous avons développé des outils d’aide à l’interprétation, notamment dans la thèse de
Tarek Habib.

1.1.3 La déclinaison en axes de R&D

La confrontation avec les besoins des utilisateurs de la Charte ainsi qu’avec les contraintes,
notamment en termes de délais ont permis d’identifier les maillons manquants dans l’archi-
tecture idéale de la Chaîne Risques.

1.1.3.1 Le recalage d’images

Le premier manque que nous avons identifié concernait le recalage d’images. En effet, les
outils maison Cnes pour les corrections géométriques (modélisation de la prise de vue, mesures
de décalages locaux), bien que précis, rapides et validés, ne permettaient de couvrir que cer-
tains des besoins des applications liées aux catastrophes.

Les outils existants avaient été conçus dans un contexte mono-capteur ou, tout du moins,
pour des images issues de capteurs similaires. Dans le cas de catastrophes, on ne peut pas
attendre l’arrivée d’images qui soient similaires à celles que l’on retrouve dans les archives et
avec lesquelles on envisage de procéder à une détection de changements.

Un autre cas non couvert par les outils disponibles à l’époque était la modélisation géométrique
de la prise de vues des capteurs autres que ceux du Cnes.

Ces 2 points durs nous ont orienté vers des recherches sur le recalage sans modèle de prise
de vue et la mise en correspondance d’images de modalités différentes. Le premier point n’est
plus d’actualité aujourd’hui, car des bibliothèques libres de modélisation de capteurs ainsi que
la généralisation de l’utilisation des modèles de fractions rationnelles rendent la modélisation
géométrique relativement accessible dans le cas de l’imagerie satellitaire. Nous ne nous y at-
tarderons donc pas.

Nous détaillerons surtout l’estimation de décalages locaux pour les images multi-capteurs.
Les contributions majeures ont été liées au recalage optique-radar [19] et à la gestion d’artefacts
lors de l’interpolation des images [20]
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1.1.3.2 La détection de changements

Même si la littérature sur les méthodes de détection de changements abrupts sur des cou-
ples d’images était relativement riche à l’époque, il fallait évaluer les approches proposées en
termes de leur utilité pour les contextes opérationnels. Les critères pour le choix de méthodes
étaient les suivants :

1. temps de calcul

2. robustesse aux conditions d’acquisition

3. possibilité d’utiliser des données multi-capteur

4. degré d’automatisation

Nous sommes arrivés à la conclusion que, pour les résolutions décamétriques, les approches
basées sur des fenêtres locales étaient les plus appropriées et nous avons identifié les point durs
suivants :

1. Sur les images optiques, le mesures de différence (même en utilisant les moyennes sur
des voisinages locaux) sont trop sensibles aux conditions d’acquisition (angle de prise de
vue, éclairages solaire). Il faut leur préférer des approches basées sur des statistiques.

2. Sur les images SAR de même incidence, le rapport de moyennes locales est assez robuste

3. Sur les images SAR acquises avec des incidences – même légèrement – différentes, il est
nécessaire d’utiliser des descriptions statistiques des voisinages.

Enfin, dans le contexte multi-capteur (optique-radar) la littérature était inexistante, et les
quelques essais que nous avons réalisés sont restés au stade de prometteurs.

Du fait que dans les premières années de la Charte très souvent les premières images
disponibles étaient des acquisitions SAR, beaucoup de mes travaux on porté là dessus. J’ai
d’abord travaillé sur les images d’incidences différentes suite à l’éruption du Volcan Nyiragongo
en 2002 en faisant des comparaisons entre des distributions de probabilité locales [14]. J’ai
ensuite travaillé avec Grégoire Mercier sur l’extension de cette approche à des distributions
quelconques avec un calcul rapide pouvant être étendu au cas multi-échelles [17]. Enfin, en
collaboration avec Jean-Yves Tourneret, pendant la thèse de Florent Chatelain, nous avons tra-
vaillé sur l’estimation de l’information mutuelle pour le cas particulier des lois Gamma [6, 5].

Tout ce qui a été dit jusqu’ici sur la détection de changements n’est pas directement utile
pour la production de cartes d’impact, car entre 2 images entourant un événement d’intérêt
il y a toujours des changements qui sont normaux et donc pas intéressants dans le contexte
applicatif.

La séparation entre changement d’intérêt et changement non intéressant peut être envis-
agée de beaucoup de façons différentes (classification post-détection, détecteur par comparai-
son de classifications, etc.).

Nous avons seulement abordé l’approche qui consiste à faire une classification supervisée
à 2 classes (changement et non changement), ce qui a été le sujet de la thèse de Tarek Habib.
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1.1.3.3 Les mesures de similarité

Le recalage d’images et la détection de changements abrupts sont 2 étapes consécutives
d’une chaîne de production de cartes de dégâts, par exemple. Ces 2 étapes ont beaucoup de
points en commun :

– le recalage d’images peut être entendu comme la recherche d’une déformation entre 2
images permettant de les rendre les plus similaires possibles

– la détection de changements sur des images parfaitement superposables peut être posée
comme la recherche de régions où le degré de similarité est inférieur à un seuil donné.

On voit dès lors que la notion de similarité est le point commun entre ces 2 procédures.
Ceci a fait que le travail sur les mesures de similarité, et plus précisément celles basées sur des
statistiques sur des voisinages locaux, est devenu un axe majeur des travaux de recherche qui
sont synthétisés dans ce mémoire.

1.1.4 Les projets européens

Si la contribution à la Charte a été le déclencheur des travaux cités précédemment, le con-
texte opérationnel des activations pour des catastrophes réelles n’est pas le plus propice pour
le développement et la validation des méthodes de traitement et d’analyse des images.

Le Cnes a évidemment mis en place des budgets de recherche et de développement logiciel
pour la conception de nouvelles méthodes, leur validation et leur intégration dans la Chaîne
Risques.

Nous avons aussi pu approfondir et valoriser ces travaux dans le cadre de 2 projets du Pro-
gramme cadre de recherche et développement (PCRD) de l’Union Européenne. Ces 2 projets,
Preview et Safer, dont le deuxième est une suite pré-opérationnelle des résultats de recherche
du premier, ont permis de :

1. Continuer à développer et améliorer des méthodes de recalage automatique d’images et
de détection de changements

2. Intégrer ces méthodes au sein de la Chaîne Risques

3. Valider les résultats par des thématiciens experts de l’interprétation d’images pour les
catastrophes.

Mon rôle dans ces projets a été principalement de développer des algorithmes et de suivre
l’industrialisation du logiciel.

1.2 Valorisation et promotion des images satellite à haute résolution

Un des intérêts principaux du CNES dans le développement des applications de l’imagerie
de télédétection est la valorisation des capteurs développés (par le Cnes ou par ses partenaires).
Lors de mon arrivée au CNES, Spot 5 était en phase finale de développement (le lancement a
eu lieu en juin 2002) et le développement de Pléiades commençait.

Le développement d’outils méthodologiques dans le cadre de ces projets a guidé les axes de
recherche décrits dans cette partie.
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1.2.1 Spot 5 et la notion d’objet

Même s’il a été lancé après Ikonos (résolution 1 m.) ou en même temps que Quickbird (ré-
solution 60 cm.), Spot 5 et ses presque vrais 2.5 m de résolution a été un succès commercial
absolu. Ceci est principalement dû a ce qu’il a été le seul capteur pouvant fournir une résolu-
tion presque métrique avec un champ de prise de vue comme celui des capteurs de résolution
décamétrique (60 km. par rapport aux 16 km. de Quickbird).

Cette combinaison unique champ/résolution s’est avérée proche de l’optimum pour beau-
coup d’applications comme l’aménagement du territoire, les risques, etc.

En revanche, les outils pour exploiter de façon efficace ces images ont dû être développés.
Si la première difficulté liée à la manipulation de ces images – leur taille inédite de 24000 ×
24000 pixels – a été résorbée par la loi de Moore, il y avait un autre aspect nouveau dans ces
données.

Sans se rapprocher du niveau de détail de l’imagerie aérienne, on a commencé à parler
d’objets dans les images. A cette époque, des outils du commerce comme le logiciel eCogni-
tion, devenu Definiens par la suite ont mis à la mode le terme OBIA, pour Object Based Image
Analysis. Cette notion n’est pas très différente d’une segmentation (multi-échelle) suivie d’une
classification hiérarchique. Le fait de faire travailler l’opérateur sur des notions de texture,
compacité et forme des régions a changé la façon de travailler de beaucoup d’interprètes, mais
cette approche, qui reste basée sur l’essai-erreur, ne peut être envisagée sur des gros volumes de
données ou dans des contextes où les contraintes de temps de mise à disposition des données
sont très fortes.

Nous avons donc lancé avec Jean-Claude Favard et Gilbert Pauc des études sur la recon-
naissance d’objets sur les images Spot 5 THR (panchromatiques), notamment avec l’équipe
du Professeur Georges Stamon de l’Université Paris V. En parallèle, et à l’aide de stagiaires, j’ai
mené des recherches sur des approches par indexation de vignettes pour reconnaître des objets
à partir d’exemples.

1.2.1.1 La classification supervisée

Afin de développer un système de reconnaissance d’objets quelconques, j’ai proposé une
architecture relativement générique de classification supervisée. Au lieu de travailler par pixel,
nous avons travaillé par vignette (fenêtre glissante avec un pas d’échantillonnage et une taille
imposant un certain recouvrement).

A l’aide d’interprètes d’images, nous avons élaboré une base d’exemples avec une dizaine
de classes (routes de différents types, ponts, bâtiments isolés, etc.) avec des spécifications très
rigides en termes de taille des vignettes et localisation des objets dans la vignette.

Nous avons ensuite effectué une classification supervisée de ces vignettes. Les résultats ont
donné lieu à une publication [15].

1.2.1.2 L’extraction de primitives

Qui dit classification supervisée, dit échantillon – d’apprentissage ou de validation. Sur les
images Spot 1 à 4 ou Landsat, l’échantillon était le pixel et il était décrit par exemple par les
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réflectances dans différentes bandes spectrales ou par des indices (NDVI, par exemple).
La classification consistait donc à demander à l’algorithme d’apprendre à reconnaître des

pixels de blé, par exemple. Dans le cas de vignettes d’images panchromatiques décrivant, dis-
ons, un rond-point, ce ne sont pas les valeurs des pixels qui décrivent les classes d’objets, mais
plutôt les formes et la géométrie.

Nous avons donc travaillé sur ce type de caractérisation [43].

1.2.2 Orfeo et l’interprétation de scènes

Dès 2003, j’ai commencé à travailler sur la préparation à l’utilisation des données Pléiades,
dans le cadre du Programme d’accompagnement Orfeo du Cnes.

Par rapport aux précédentes missions optiques d’observation de la Terre du Cnes, ce pro-
gramme préparatoire était beaucoup plus ambitieux. Il a été organisé en 2 volets :

– le volet thématique visant à recueillir les besoins des utilisateurs et à mener des études
de potentialité des données, puis de validation des résultats ;

– le volet méthodologique, dont je suis devenu responsable en 2005, qui visait à mener des
actions de recherche pour développer des nouvelles méthodes nécessaires pour répondre
aux besoins des utilisateurs.

Le travail d’animateur du volet méthodologique m’a permis de faire un état de l’art des
méthodes existantes (dont j’ai coordonné la rédaction avec des chercheurs d’une vingtaine de
laboratoires de recherche en traitement des images). Cet état de l’art a ensuite permis d’ali-
menter les axes de recherche financés par le Cnes dans le domaine de l’extraction d’information
à partir d’images à haute résolution. Les moyens du Cnes pour soutenir ce type de recherche
sont les suivants :

– Les bourses de recherche (thèse et post-doc). Dans ce contexte ont été financées les thèses
de Vincent Poulain et Carolina Vanegas.

– Les contrats de R&T via les Dossiers d’Axes Techniques (DAT). J’ai été responsable du
DAT OT-4 de 2005 à 2009 qui a financé une moyenne de 10 contrats par an avec un
budget moyen de 500 k¤. J’ai aussi piloté plusieurs contrats chaque année dans ce cadre.

– Les études internes et les stages. Dans ce contexte, j’ai encadré en moyenne 2 stages par
an qui ont servi à démarrer des travaux sur le raisonnement spatial (Julien Michel),
la détection de changements entre images et données vecteur (Vincent Poulain), la fu-
sion optique/SAR (Jan Wegner), la segmentation interactive d’objets (Julien Osman), la
génération automatique de cartes d’occupation des sols (Christophe Lay, Malik Ciss), la
détection de changements orientée objets (Éric Koun).

Le travail de recherche que j’ai mené pour le Programme Orfeo s’articule autour de 2 thé-
matiques qui couvrent bien les besoins méthodologiques liés aux données Pléiades et Cosmo
Skymed :

1. Le raisonnement spatial pour la reconnaissance d’objets complexes.

2. L’utilisation d’images à haute résolution pour la mise à jour de cartes numériques au
format vecteur.
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1.2.2.1 Le raisonnement spatial

Le recueil des besoins des utilisateurs thématiques Orfeo nous a permis – avec Jean-Claude
Favard et Hélène de Boissezon – d’identifier un ensemble d’objets d’intérêt. La liste d’objets
ainsi constituée était bien différente de ce que nous avions pu avoir pour les images moins
résolues. Il s’agissait d’abord d’une liste très longue et constituée d’objets soit complexes, soit
avec une variabilité intra-classe très importante.

À la différence de ce que nous avons fait pour les images Spot 5 en termes de reconnaissance
d’objets, il n’était pas possible d’utiliser les approches de classification par vignette pour la
reconnaissance d’objets complexes.

C’est en 2005 que j’ai passé du temps à étudier la bibliographie qui m’a permis de mettre en
place un programme de recherche sur l’utilisation des techniques de raisonnement spatial pour
l’interprétation de scènes de type Pléiades. Les premiers développements méthodologiques ont
démarré avec le stage de Julien Michel sur l’évaluation du système RCC-8 (Region Connection
Calculus) et se sont continués par la suite par des améliorations de la procédure mise en place
et l’intégration dans un système d’apprentissage supervisé [18].

Dans le cadre de la thèse d’Ahed Alboody nous avons étendu ce système de raisonnement.
La thèse de Carolina Vanegas nous a mené vers les techniques floues pour la mise en place

de relations spatiales autres que celles purement topologiques du RCC-8.

1.2.2.2 Mise à jour de bases de données cartographiques

Les bases de données cartographiques numériques étant de plus en plus utilisées dans la
plupart des applications thématiques de la télédétection, il a été nécessaire de se poser la ques-
tion de comment les intégrer dans des approches d’analyse d’images.

L’utilisation de ces cartes numériques – qui se présentent sous la forme d’objets vectorisés
(points, lignes, polygones) avec des attributs associés – se fait le plus souvent dans un contexte
de mise à jour : l’image satellitaire est plus récente que la carte et sert à l’actualiser.

Si beaucoup de travaux existaient pour des résolutions plus fines (photographie aérienne)
ou pour des nomenclatures bien spécifiques, nous n’avons pas trouvé d’approche générique
permettant d’utiliser des types d’imagerie variés pour des nomenclatures quelconques. Le tra-
vail de thèse de Vincent Poulain – qui a suivi son stage de M2 – a consisté à démontrer qu’une
approche générique pouvait être mise en place. Cette approche accepte en entrée des images
optiques et SAR de résolutions allant de 50 cm. à 5 m. et peut être facilement adaptée à des
types de nomenclatures – objets – différents en définissant un ensemble d’éléments focaux et
leurs descripteurs associés [30].

1.3 Conclusion

Ce chapitre a présenté un survol rapide des activités de recherché menées sur les 10 dernières
années. Il a été montré comment 2 cadres applicatifs déterminés par les activités du Cnes ont
permis de définir des axes de recherche cohérents.

La suite du document présentera les contributions principales dans ces différents domaines
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d’activité. J’éviterai de donner beaucoup de détails et renverrai le lecteur intéressé vers les
publications dans les annexes.





2 Mesures de similarité pour le recalage d’images

et la détection de changements

Pour les images de résolution moins fine qu’environ 5 m., le problème du recalage et celui
de la détection de changements sont en quelque sorte des duaux :

– le recalage, en supposant qu’il n’y a pas de changements entre les images à recaler, con-
siste à trouver la déformation géométrique permettant de rendre ces images les plus sim-
ilaires possibles ;

– la détection de changements, en supposant que les images sont parfaitement recalées,
consiste à détecter les régions où la similarité locale est faible.

Cette façon de présenter ces 2 problèmes est volontairement vague afin de rendre évident
le lien entre eux. Les aspects particuliers de chacun des 2 problèmes et les contributions à leur
résolution seront présentés dans les parties 2.2 et 2.3.

Dans la partie suivante nous nous intéressons à l’outil de base qui sera utilisé par la suite
dans les 2 cas : les mesures de similarité statistique.

2.1 Les mesures de dépendance statistique

2.1.1 Le coefficient de corrélation

Nous rappelons ici comment est calculé le coefficient de corrélation entre 2 fenêtres I et J
extraites de 2 images. Les coordonnées des pixels dans les fenêtres sont notées par (x,y) :

ρ(I, J) =
1
N

∑
x,y(I(x,y)−mI )(J(x,y)−mJ )

σIσJ
. (2.1)

Le coefficient de corrélation peut être caractérisé comme ceci :
– Applicable sur des images de radiométrie similaire
– Calcul rapide
– Estimation de la déformation précise
– Robuste à la présence de bruit
Cependant, son inconvénient majeur est qu’il ne peut prendre en compte que des transfor-

mations affines entre les radiométries des images comparées (j = αi + β) et il ne peut donc pas
être utilisé avec ces images issues de capteurs différents.

21
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2.1.2 Généralisation : interprétation probabiliste

La formulation présentée dans l’équation 2.1 peut être approchée avec un point de vue
probabiliste :

ρ(I, J) =
1
N

∑
x,y(I(x,y)−mI )(J(x,y)−mJ )

σIσJ

=
∑
(i,j)

(i −mI )(j −mJ )
σIσJ

pij

(2.2)

où la somme porte sur la liste des couples radiométriques (i, j), et pij est la valeur de l’his-
togramme normalisé joint (estimation de la densité de probabilité jointe, ddp, fij (i, j)) du cou-
ple d’images.

Ceci implique une modélisation linéaire telle que :

j = (i −mI )
σJ
σI

+mJ , (2.3)

et nous évaluons sa vraisemblance par pondération de chaque chaque couple radiométrique
par pij .

On pourrait se donner d’autres modèles pour les couples radiométriques, ce qui amènerait
à d’autres mesures de similarité. Par exemple, si on suppose le modèle identité, i = j, on obtient
la norme Ln :

Ln(I, J) =
∑
i,j

|i − j |npij , (2.4)

Des modèles plus complexes peuvent être obtenus :

1. Moment diagonal :

MD(I, J) =
∑
i,j

|i − j | (i + j − σI − σJ )pij , (2.5)

1. Cluster Shade :

Cshade(I, J) =
∑
i,j

(i + j − σI − σJ )3pij , (2.6)

1. Cluster Prominence :

Cpro(I, J) =
∑
i,j

(i + j − σI − σJ )4pij . (2.7)

Une étude de ces modèles peut être lue dans [4]. Ils sont très sensibles au bruit et sont
rarement utilisés pour les couples d’images multi-capteurs.

2.1.3 Mesures multi-capteurs

Nous introduisons ici plusieurs mesures de similarité qui se sont montrées utiles dans le
problème de recalage d’imagerie médical multi-modalités [34].
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Dans la suite, les sommes sont calculées sur des valeurs de radiométrie. Nous utiliserons la
moyenne conditionnelle :

mI |j =
1
pj

∑
i

ipij ; (2.8)

et la variance conditionnelle :

σ2
I |j =

1
pj

∑
i

(i −mI |j )2pij . (2.9)

Pour chacune des mesures suivantes, nous réaliserons le même type de caractérisation de
la partie 2.1.1.

2.1.3.1 Mesures utilisant les valeurs radiométriques et les probabilités

Dans cette classe, nous ne prendrons pas en compte les mesures fondées sur les différences
de radiométries (norme Ln de la différence) [37, 9, 2], ou des mesures de texture, car leurs
performances sont mauvaises. En effet, ces modèles sont trop restrictifs pour ce qui concerne
le critère de similarité et ne sont docn pas applicables dans le cas multi-capteurs.

– Écart type normalisé ou critère de Woods
Les travaux de Woods et al. d’abord sur le recalage mono-modalité [44] puis multi-
modalité [45] a conduit à l’élaboration de cette mesure. Étant donnée une valeur d’inten-
sité sur une des images, c’est à dire l’ensemble de pixels ayant cette valeur, cette mesure
analyse la variabilité des valeurs des pixels homologues dans l’autre image. L’hypothèse
sous-jacente est que cette variabilité (qui est en fait mesurée par la variance) sera mini-
mum quand les images seront recalées :

Woods(I |J) =
∑
j

σI |j
mI |j

pj (2.10)

Afin d’avoir un critère à maximiser, on utilise :

SWoods(I |J) = 1−
∑
j

σI |j
mI |j

pj (2.11)

– Rapport de corrélation
Il s’agit ici d’une mesure bien connue des statisticiens. Sa première utilisation pour le
recalage d’images a été proposée par Roche et al. [32]. Elle est définie comme ceci :

η2(I |J) = 1− 1

σ2
I

∑
j

σ2
I |jpj (2.12)

Elle peut être interprétée de façon similaire au critère de Woods.

2.1.3.2 Mesures utilisant seulement les probabilités

Cette classe de mesures n’utilise pas les radiométries des pixels, mais seulement l’estima-
tion de la ddp jointe. Bien entendu, cette estimation est réalisée en utilisant les pixels des
images !



24
CHAPITRE 2. MESURES DE SIMILARITÉ POUR LE RECALAGE D’IMAGES ET LA

DÉTECTION DE CHANGEMENTS

– Distance à l’indépendance
C’est une version normalisée du test du χ2 [33] :

χ2(I, J) =
∑
i,j

(pij − pipj )2

pipj
(2.13)

Elle mesure le degré de dépendance statistique entre les 2 images à comparer. Pour 2
variables indépendantes, la ddp jointe est identique au produit des ddp marginales. La
corrélation est un test d’indépendance d’ordre 2 et celui-ci en est une généralisation.

– La famille des f-divergences
Une f-divergence [8] mesure l’espérance de la diversité du rapport de vraisemblance entre
2 distributions P et Q :

Df (P ,Q) = EQ

[
f

(
dp(x)
dq(x)

)]
=

∫
f

(
p(x)
q(x)

)
q(x)dx (2.14)

EQ est l’espérance sur Q, dp(x)
dq(x) est la dérivée par rapport à une densité, f est continue et

convexe sur [0,+∞). Une divergence peut être interprétée comme une entropie relative.
Afin de simplifier la notation, nous utiliserons : p = pij , q = pipj ,

∫
=

∑
i,j .

Table 2.1: Expressions de f dans les f-divergences

Mesure f (x)

Distance de Kolmogorov 1
2 |x − 1|

Information mutuelle x logx
Divergence de Kullback (x − 1)logx
χ2-divergence 1

2 (x − 1)2

Distance de Hellinger 1
2 (
√
x − 1)2

Distance de Bhattacharyaa
√
x

Distance de Toussaints x x−1
x+1

K-divergence de Lin x log 2x
1+x

En fonction du choix de la fonction f (voir tableau 2.1), on obtient plusieurs cas intéres-
sants :

1. Distance de Kolmogorov :

V (P ,Q) =
1
2

∫
|p − q| (2.15)

2. Information de Kullback ou information mutuelle :

K(P ,Q) =
∫
p log

p

q
(2.16)

3. Divergence de Kullback :

K ′(P ,Q) =
∫

(q − p) (logq − logp) (2.17)

4. χ2-divergence :

R(P ,Q) =
1
2

∫
(p − q)2

q
(2.18)
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5. Distance de Hellinger :

H2(P ,Q) =
1
2

∫
(
√
p −√q)2 (2.19)

6. Distance de Toussaints :
T (P ,Q) =

∫
p −

2pq
p+ q

(2.20)

7. K-divergence de Lin :

Kdiv(P ,Q) =
∫
p log

2p
p+ q

(2.21)

Toutes ces mesures donnent des résultats très similaires [35] et ils sont aussi très proches
de ceux obtenus avec la distance à l’indépendance (équation 2.13).

– Cluster reward algorithm
Soit HIJ (k, l) l’histogramme joint du couple d’images et soient HI (k) et HJ (k) respective-
ment les histogrammes marginaux et P le nombre de pixels. Nous définissons

ICRA =
Φ
F −

F
P 2

1− F
P 2

; (2.22)

où

Φ =
N−1∑
k=0

N−1∑
l=0

H2
IJ (k, l); (2.23a)

F =
√
hIhJ ; (2.23b)

hI =
N−1∑
k=0

H2
I (k); (2.23c)

hJ =
N−1∑
k=0

H2
J (k); (2.23d)

L’indice ICRA aura une valeur élevée quand l’histogramme joint a une dispersion faible.
Ce manque de dispersion peut être dû à une forte corrélation (histogramme distribué le
long d’une ligne) ou à cause « d’amas » de valeurs radiométriques. Dans les 2 cas, on peut
prédire les valeurs de radiométrie d’une image à partir de ceux de l’autre.
Afin de comparer ICRA avec les f − divergences, nous pouvons réécrire l’équation (2.22)
ainsi :

ICRA =

∫
p2
ij −

∫
p2
i

∫
p2
j√∫

p2
i

∫
p2
j −

∫
p2
i

∫
p2
j

. (2.24)

Si nous considérons que le dénominateur correspond à un terme de normalisation, nous
pouvons nous concentrer sur le numérateur. Il contient les mêmes termes que les f −
divergences, c’est à dire, un terme qui dépend de la ddp jointe et un autre qui dépend du
produit des marges.
Nous pouvons donc en faire une interprétation similaire à celle des tests d’indépendance.
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L’intérêt principal du CRA par rapport à la famille des f −divergences réside dans le fait
que le bruit d’estimation de l’histogramme a moins d’influence. Ceci permet d’estimer la
mesure sur des fenêtres de taille plus faible, ce qui aura néanmoins comme conséquence
de produire un pic moins franc.

2.2 Le recalage d’images

La contribution la plus importante de mes travaux dans ce domaine a été de transposer
ce qui était fait dans d’autres domaines de l’imagerie, notamment médicale, au domaine de
la télédétection. Il a fallu prendre en compte les spécificités de l’imagerie satellitaire (parties
2.2.1 et 2.2.2) et traiter le problème des artefacts d’interpolation liés au recalage sous-pixélique,
notamment dans le cas optique-radar étudié dans la partie 2.2.3.

2.2.1 Modélisation du problème de mise en correspondance d’images

Dans cette partie, nous donnons les définitions qui nous permettront de formaliser le prob-
lème de la mise en correspondance d’images. Nous commençons par définir les images de
référence et secondaire :

Definition 2.2.1 Image de référence : image sur laquelle les autres seront mises en correspondance.

Definition 2.2.2 Image secondaire : image qui sera déformée géométriquement afin de la mettre en
correspondance sur l’image de référence.

Deux concepts fondamentaux sont ceux de mesure de similarité et de transformation géométrique :

Definition 2.2.3 Soient I et J 2 images et c un critère de similarité, nous appelons mesure de simi-
larité toute fonction scalaire strictement positive, Sc telle que :

Sc(I, J) = f (I, J, c), (2.25)

où Sc a un maximum absolu quand les 2 images I et J sont /identiques/ au sens du critère c.

Definition 2.2.4 Une transformation géométrique T est un opérateur qui, appliqué aux coordon-
nées (x,y) d’un point de l’image secondaire, donne les coordonnées (u,v) de son point homologue
(PH) dans l’image de référence : (

u,v
)

= T
(
x,y

)
(2.26)

Enfin, nous définissons le problème de la mise en correspondance d’images :

Definition 2.2.5 Mise en correspondance d’images :

1. déterminer une transformation géométrique T qui maximise la similarité entre une image de
référence I et le résultat de la transformation T ◦ J :

Argmax
T

[Sc(I,T ◦ J)]; (2.27)

2. ré-échantillonnage de J par application de T .
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2.2.2 Modélisation de la déformation géométrique

La transformation géométrique de la définition 2.2.4 est utilisée pour la correction de la
déformation entre 2 images à mettre en correspondance. Cette déformation, contient des in-
formations qui sont liées à la scène observée ainsi qu’aux conditions d’acquisition. Ces défor-
mations peuvent être classés en 3 types en fonction de leur origine physique :

1. déformation liées à l’attitude moyenne du capteur (angle d’incidence, éventuel pilotage
en lacet de la plate-forme) ;

2. déformations liées à la parallaxe (principalement dues au relief) ;

3. déformations liées à l’évolution de l’attitude pendant l’acquisition (micro-vibrations présentes
sur les capteurs de haute résolution spatiale).

Ces déformations sont caractérisées par leurs fréquence et amplitude. Elles sont présentées
sur le tableau suivant :

Amplitude Fréquence spatiale

Attitude moyenne Forte Faible

Parallaxe Moyenne Forte et moyenne

Changement d’attitude Faible Faible et moyenne

En fonction du type de déformation à corriger, son modèle sera différent. Par exemple, si la
seule déformation à corriger est celle introduite par l’attitude moyenne, un modèle physique
de la géométrie d’acquisition, indépendant du contenu de l’image sera suffisant. Si le capteur
n’est pas bien connu, cette déformation sera approchée par un modèle analytique. Quand les
déformations à modéliser contiennent des hautes fréquences, les modèles analytiques ne sont
pas adaptés. Dans ce cas un échantillonnage fin de la déformation, de type grille de déforma-
tion, doit être utilisé.

Les points suivants résument le problème de la modélisation des déformations :

1. Un modèle analytique est une approximation de la déformation. Il est souvent obtenu
comme ceci :

a) Directement à partir d’une modélisation physique sans utiliser le contenu de l’im-
age.

b) Par estimation des paramètres d’un modèle a priori. Les paramètres peuvent être
estimés :

i. Par résolution d’équations en utilisant des points homologues (PH), qui eux
mêmes peuvent être obtenus manuellement ou de façon automatique.

ii. Par maximisation d’une mesure de similarité globale.

2. Une grille de déformation est un échantillonnage de la déformation.

Ce dernier point implique que le pas d’échantillonnage de la grille doit être suffisamment
petit afin de prendre en compte les déformations de haute fréquence (théorème de Shannon).
Bien entendu, si les déformations ne sont pas stationnaires – ce qui est souvent le cas pour des
déformations liées au relief – l’échantillonnage peut être irrégulier.
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En guise de conclusion, on peut dire que la définition 2.2.5 pose le problème de la mise
en correspondance comme un problème d’optimisation. Cette optimisation peut être locale ou
globale avec une mesure de similarité qui elle-même peut être locale ou globale. Le tableau 2.2
propose une synthèse du problème.

Table 2.2: Approches pour la mise en correspondance d’images

Modèle géométrique Mesure de similarité Optimisation

Physique Aucune Globale
Analytique Globale Locale
avec PH
Analytique Globale Globale
sans PH
Grille Locale Locale

L’approche idéale consisterait à appliquer un recalage qui soit optimisé localement du point
de vue de la déformation et aussi du point de vue de la mesure de similarité. Ceci est le cas
quand on utilise des grilles denses pour modéliser la déformation. Malheureusement, cette
approche est la plus coûteuse en temps de calcul, ce qui fait qu’on utilise souvent, soit un sous-
échantillonnage de la grille, soit une estimation de la similarité sur un nombre très restreint
de points afin d’estimer un modèle analytique de déformation. Ces approximations produisent
des erreurs locales qui, en fonction de la topographie locale, peuvent être de plusieurs pixels.

Même si cette précision peut être suffisante pour certaines applications (par exemple pour
importer une image dans un système d’information géographique), elle ne l’est pas pour la
fusion de données, la segmentation multi-canal ou la détection de changements [38]. C’est
pourquoi nous nous intéressons à l’estimation utilisant des grille denses.

Quand j’ai commencé à travailler sur ce sujet, la bibliographie disponible ne montrait pas de
cas opérationnel utilisant des approches d’optimisation locale et seulement quelques auteurs,
comme par exemple [24] utilisaient des mesures de similarité autres que la corrélation pour
l’imagerie de télédétection. Cependant, dans le domaine de l’imagerie médicale, beaucoup de
mesures de similarité avaient déjà été proposées comme des généralisations de la corrélation.
Ces mesures permettent le recalage de modalités d’imagerie très différentes. Néanmoins, ces
travaux n’étaient pas directement utilisables en télédétection, car les déformations modélisées
en imagerie médicale sont souvent globales et utilisent des modèles paramétriques. Comme
souligné plus haut, les déformations liées au relief sur les images de moyenne et haute résolu-
tion spatiale nécessitent des modèles de déformation locaux.

2.2.3 Artefacts d’interpolation

Dans l’objectif d’obtenir un recalage avec une précision sous-pixélique, la mesure de simi-
larité est estimée sur des vignettes décalées d’une fraction de pixel. Ce décalage se réalise par
interpolation d’images.

Si les images sont bien échantillonnées et que les interpolateurs sont de bonne qualité, cette
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opération se passe sans encombre. Nous ferons ici abstraction du problème de l’échantillon-
nage des images – même si beaucoup de capteurs spatiaux ne respectent pas le critère de Shan-
non.

Étant donné que cette opération d’interpolation est coûteuse et a priori réalisée quelques
dizaines de fois par pixel dans l’image, il est habituel d’utiliser des interpolations rapides.
Le coût de calcul d’une interpolation est proportionnel à la longueur (en échantillons) du fil-
tre utilisé. La qualité de l’interpolation a une dépendance inversée par rapport à cette même
longueur.

Ces interpolations approchées ne se traduisent pas seulement par des résultats bruités,
mais aussi par des artefacts avec une structure qui n’est pas spatialement aléatoire. Ceci nous
a motivé pour rechercher l’origine de ces artefacts et les façons de les atténuer.

Ce problème d’artefacts d’interpolation avait déjà été analysé en imagerie médicale dans
le cadre limité de modèles de déformation analytiques et pour l’information mutuelle [29, 39,
22]. Nous avons généralisé ce travail en le rendant indépendant de la mesure de similarité et
du modèle de déformation utilisé.

Dans [20] nous avons donné une description analytique du problème en montrant que :

1. Les artefacts étaient dus à la dépendance du degré de lissage de l’interpolateur avec le
décalage sous-pixélique appliqué

2. Ces artefacts sont d’autant plus forts que l’image interpolée est bruitée

3. Un lissage préalable des images permet d’atténuer les artefacts.

2.3 La détection de changements

La détection de changements entre des images de télédétection est rendue difficile à cause
de plusieurs effets, souvent présents simultanément :

1. Différence de point de vue entre les acquisitions : même dans le cas d’images parfaite-
ment recalées, les effets d’incidence (de la lumière ou de l’onde SAR) peuvent rendre
les images différentes du point de vue de la mesure physique, même en absence de tout
changement.

2. Les différences d’éclairage et d’atmosphère peuvent changer aussi la mesure radiométrique

Ces 2 phénomènes, ajoutés au fait que les 2 acquisitions à comparer peuvent avoir été
obtenues par des capteurs différents, font que des approches simples de mesure de variation,
y compris les mesures de corrélation, s’avèrent souvent inutiles.

Nous nous sommes donc orienté vers des mesures statistiques faisant peu d’hypothèses sur
les distributions des données. Nous les avons spécialisées dans le cas du radar pour aller plus
loin dans la qualité de la détection.

2.3.1 Comparaison de densités de probabilité

Une des premières approches mises en place a été celle de comparer les statistiques locales
dans un voisinage du pixel d’intérêt entre les 2 dates d’acquisition.
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Il faut bien noter ici que nous n’estimons pas la dépendance entre les 2 dates (similarité
entre les pixels), mais bien une distance entre les densités de probabilité.

La première contribution dans ce domaine a été d’utiliser une estimation paramétrique des
densités de probabilité à l’aide du système de Pearson pour ensuite l’injecter dans la divergence
de Kullback-Leibler [14]. Ceci a permis d’obtenir des résultats meilleurs que ceux obtenus par
le détecteur du rapport de moyennes et celui de la distance Euclidienne entre les densités de
probabilité.

L’inconvénient de cette approche était, d’un côté le coût calculatoire de l’intégration numérique
dans la divergence de Kullback-Leibler, et d’un autre côté, la limitation aux lois du système de
Pearson. Avec Grégoire Mercier, nous avons étendu cette approche à des lois quelconques, mais
proches de la loi normale [17]. L’idée était de développer la densité de probabilité de chacune
des images en série autour d’une Gaussienne, c’est le développent en série d’Edgeworth qui
permet d’obtenir une expression qui ne dépend que des cumulants et qui contient très peu de
coefficients si la densité n’est pas très différente de la Gaussienne.

Une fois que l’on a l’expression de la série pour les 2 variables à comparer, on peut les in-
troduire dans l’expression de la divergence de Kullback-Leibler et on aboutit à une expression
compliquée, mais qui ne dépend que des cumulants de chacune des variables.

En utilisant κX;i pour le cumulant d’ordre i de la variable aléatoire X, la divergence de
Kullback-Leibler entre les variables X et Y jusqu’à l’ordre 4 s’écrit :
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Nous avons ensuite étendu cette approche à une analyse multi-résolutions, l’idée étant de
mesurer cette similarité locale sur des fenêtres de tailles différentes avec un coût de calcul
limité. Nous avons approché le problème en réalisant une mise à jour des moments quand un
N +1me échantillon xN+1 est ajouté à un ensemble deN observations {x1,x2, . . . ,xN } qui ont déjà
été traitées. Pour les moments d’ordre r, on peut écrire :

µ̃r,[N+1] =
N

N + 1
µ̃r,[N ] +

1
N + 1

xrN+1.

où µ̃r,[N ] (resp. µ̃r,[N+1]) est le moment d’ordre r estimé avec N échantillons (resp. N + 1
échantillons). On arrive à l’expression suivante :
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µ1,[N ] =
1
N
s1,[N ] (2.29)
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1
N
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(
r
`

)(
−µ1,[N ]

)r−`
s`,[N ],

où la notation sr,[N ] =
∑N
i=1 x

r
i a été utilisée. On peut ainsi mettre à jour le calcul des moments

pour des tailles de fenêtre croissantes sans tout recalculer. Ceci permet par exemple de calculer
la divergence de Kullback-Leibler sur des fenêtres de taille impaire allant de 9×9 pixels jusqu’à
51×51 pixels avec un coût de calcul proche de celui du calcul sur une fenêtre de 31×31 pixels.

2.3.2 Mesures de dépendance

Les mesures de similarité qui comparent les densités de probabilité locales ont l’avantage
de n’avoir besoin que de l’estimation des marges. Par contre, elles ne sont pas capables de mod-
éliser la dépendance entre les variables. Par exemple, elles sont insensibles à une permutation
des pixels dans la fenêtre d’analyse.

Nous nous sommes donc intéressés aux mesures de dépendance statistique de même type
que celles utilisées dans le recalage d’images (partie 2.1). Après une petite incursion infructueuse
dans le terrain des copules [26] – le choix de la copule reste une difficulté importante et la com-
plexité de calcul associée aux statistiques de rang en rend l’utilisation très lourde – dont l’ob-
jectif était de ne pas avoir besoin d’estimer la densité conjointe, nous nous sommes recentrés
dans l’estimation de l’information mutuelle.

Les contributions principales dans ce domaine ont été faites dans la thèse de Florent Chate-
lain.

Nous avons commencé par évaluer l’intérêt des distributions Gamma bivariées. La pre-
mière étape a consisté à mettre en place et évaluer les estimateurs des paramètres de ces lois
(méthode des moments et maximum de vraisemblance). Dans un deuxième temps, ces estima-
teurs ont été utilisés pour mesurer l’information mutuelle entre 2 variables aléatoires suivant
des lois Gamma.

L’expression de la densité d’une loi Gamma bivariée de paramètre de forme q et paramètre
d’échelle P (Γ (q,P )) prend la forme suivante :
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et fq(z) est définie comme ceci :
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zk
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. (2.30)

En utilisant le développement mathématique présenté dans [6], on peut obtenir une ap-
proximation de l’information mutuelle entre 2 densités Gamma qui a la forme suivante ;
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avec r le coefficient de corrélation.
L’intérêt de cette expression est qu’une fois le paramètre q des lois Gamma des marges

estimé, le coût d’estimation de l’information mutuelle est le même que celui de la corrélation.
La limitation de cette technique est l’hypothèse de lois marginales avec le même paramètre

de forme. Afin de lever cette limitation, la deuxième partie de la thèse de Florent Chatelain
a consisté à développer des estimateurs pour ce qu’on a appelé les lois Gamma multivariées
multicapteurs. Les résultats principaux ont été présentés dans [5] et le lecteur intéressé est
invité à en consulter les détails.

2.3.3 Classification supervisée

Les techniques de détection de changements présentées plus haut ont un inconvénient ma-
jeur : elles ne sont pas capables de distinguer entre les changements intéressants et les autres.
Même si les mesures de similarité utilisées sont robustes aux changements d’illumination, d’in-
cidence, etc. elles ne font pas de différence entre les différents types de changements.

Dans le cas de la génération de cartes de dégâts suite à des catastrophes naturelles (inon-
dations, tremblements de terre, etc.), il est nécessaire de distinguer les zones qui ont changé
suite à l’événement catastrophique des zones qui ont eu une évolution normale (évolution de
la végétation, par exemple).

Face à ce problème difficile, il nous a semblé nécessaire de placer un opérateur au sein du
système de détection de changements, plutôt que de le placer après pour réaliser une sélection
des changements pertinents.

L’architecture de la chaîne de changements proposée était simple. Il s’agissait de réaliser
une classification à 2 classes (changement intéressant et la classe complémentaire). Nous avons
abordé ce problème avec une approche pixel – les résolutions des satellites disponibles dans
la Charte à l’époque ne justifiaient pas l’approche objet – et les primitives utilisées pour la
caractérisation des pixels étaient toutes trouvées : les valeurs des pixels eux-mêmes et des
indicateurs de changements simples (différences, ratios, corrélations).

Nous avons choisi un classifieur de type SVM à cause de sa capacité à travailler avec peu
d’échantillons d’apprentissage – donnés par un opérateur en temps réel – et aussi parce que les
SVM permettent de travailler dans des espaces de primitives à grande dimension.

Une mise en oeuvre logicielle (figure 2.1) a été mise à disposition de photo-interprètes qui
l’ont validée dans le cadre du projet FP7 PREVIEW.

Cette étude à donné lieu à la thèse de Tarek Habib. Ce travail de thèse a eu comme objectif
d’optimiser cette chaîne et de donner à l’opérateur la possibilité d’agir sur un curseur qui règle
le compromis temps de calcul / qualité de la détection.

Le point de départ est donc une chaîne très simple où l’on extrait des primitives à partir
des images à comparer, puis on applique une fonction de décision obtenue par classification
supervisée (figure 2.2).

La figure 2.3 présente en rouge les étapes sur lesquelles des contributions ont été réalisées.
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Figure 2.1: Logiciel de détection de changements par classification supervisée

Figure 2.2: Diagramme de blocs d’une chaîne de détection de changements par classification
supervisée.

2.3.3.1 Sélection de primitives

Dans cette catégorie, une technique utilisant un noyau additif a été développée. Chaque
composante du noyau opère sur un sous-ensemble de primitives :

K(Xi ,Xj ) =
n∑
l=1

Kγ (xγi ,x
γ
j ) (2.32)

Si un certain sous-ensemble des primitives, correspondant au sous-noyau Kγ est retiré de la
classification, un vecteur de test produira une erreur de classification si la condition suivante
est remplie :

ytest

m∑
i=1

yiβiK(Xtest ,Xi) + ytestb ≤ ytest

m∑
i=1

yiβiKγ (xγi ,x
γ
test) (2.33)
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Figure 2.3: Diagramme de blocs de la chaîne optimisée

En utilisant cette inégalité, on peut classer les sous-ensembles de primitives en fonction du
taux d’erreur produit sur un ensemble de vecteurs de test.

2.3.3.2 Optimisation du noyau

La technique mise en oeuvre ici est une optimisation de l’adéquation noyau/sous-ensemble
de primitives.

En utilisant le théorème de Mercer, on peut démontrer que si ψ(·) est une fonction sur Rp

et K ′ est un noyau sur Rp ×Rp, alors :

K(x,y) = K ′(ψ(x),ψ(y)) (2.34)

est aussi un noyau. De la même façon, on peut démontrer qu’une combinaison linéaire
non négative de noyaux est aussi un noyau. En combinant ces 2 propriétés, la combinaison de
noyaux suivante est aussi un noyau de Mercer :

K(x,y) =
M∑
i=1

aiKi(ψi(x),ψi(y)) (2.35)

Le résultat de l’équation 2.35 est particulièrement intéressant si on utilise des primitives
différentes pour chaque type de noyau. Par exemple, s’il s’agit de primitives spectrales, géométriques
et texturales, on peut utiliser un noyau différent pour chacun de ces groupes et composer ainsi
le noyau final.

Nous avons développé une méthode pour optimiser un noyau composite en fonction des
primitives disponibles en entrée du traitement.

Les sous-noyaux composant le noyau de l’équation 2.35 seront appliqués à différents groupes
de primitives. La construction de ce noyau nécessite d’abord de regrouper les primitives par
familles et de lister les types de noyaux élémentaires qui seront évalués.
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Ensuite, une sélection des noyaux élémentaires donnant les meilleurs résultats pour chaque
famille de primitives est réalisée. Pour cette sélection, de mesures de qualité sont nécessaires.
Nous avons choisi les suivantes :

– L’erreur de généralisation par leave-one-out.
– Le nombre d’exemples d’apprentissage mal classés.
– Une mesure originale qui combine le nombre de vecteurs support (complexité de la so-

lution) et le nombre d’exemples mal classés : KCost = Nb.Mis. ∗ Nb.SV
|w| .

– Une deuxième mesure originale qui intègre au KCost le nombre d’itérations de l’optimi-
sation – que nous appelons temps : KTCost = Nb.Mis. ∗ Nb.SV ∗ time

|w| .
Nous montrons ici des résultats obtenus sur des images réelles – un couple d’images SAR

avant et après une éruption volcanique – sur lesquelles 3 groupes de primitives ont été cal-
culés :

1. Différence entre les 2 dates, ratio entre les 2 dates, ratio des moyennes et ratio des médi-
anes.

2. Corrélation entre les 2 dates, information mutuelle entre les 2 dates, entropie et énergie
(de Haralik).

3. Distance quadratique moyenne et divergence de Kullback-Leibler.

Les noyaux utilisés sont les suivants :

Linéaire : K(X,Y ) = 〈X,Y 〉

Polynomial : K(X,Y ) = (〈X,Y 〉)4

Gaussien : K(X,Y ) = exp (−0.5‖X − Y ‖2)

Le tableau suivant montre les résultats obtenus :

Noyau Précision

Linéaire 81.19%
Polynomial 72.64%
Gaussien 77.2%

Err. Génér. 76.9%
Err. Classif. 74.51%
KCost 86.32%
KTCost 65.22%

On observe que l’optimisation de la métrique KCost permet d’obtenir un noyau additif qui
fournit des résultats meilleurs que ceux obtenus par le meilleur des noyaux classiques.

2.3.3.3 Simplification de la fonction de décision

Dans le cas des noyaux non-linéaires, le coût calculatoire pour classer un vecteur est pro-
portionnel au nombre de vecteurs support décrivant la fonction de décision.

L’objectif de cette simplification est donc d’accélérer le temps de classification.
Une première approche qui a été mise en oeuvre a consisté à classer les vecteurs support en

fonction de l’erreur de classification produite quand ils sont supprimés.
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Une deuxième approche plus originale a consisté à développer en série de Taylor l’expres-
sion analytique de la surface de décision :

f (xtest) = sgn

 m∑
i=1

αiyik(xtest ,xi) + b

 . (2.36)

Pour ce faire, il faut choisir un ensemble d’origines autour desquelles le développement est
réalisé. Les paramètres qui permettent de régler le compromis entre le temps de calcul et la
précision de la classification sont le nombre d’origines (i.e. le nombre de séries) et l’ordre des
séries.

Les résultats obtenus ont montré que l’on peut gagner un facteur 10 en temps de calcul
avec une perte de 10% à 20% sur la qualité de la classification. La perte en termes de qualité
peut paraître importante, mais ces chiffres sont obtenus avec une sélection aléatoire des échan-
tillons d’apprentissage. Une sélection guidée par l’opérateur, éventuellement dans un contexte
d’apprentissage actif, pourra permettre de minimiser les effets négatifs de l’optimisation du
temps de calcul.



3 Classification pour la reconnaissance d’objets

3.1 Introduction

Notre objectif est de mettre au point un système de classification d’objets dans des images
satellitaires à haute résolution (de type Spot 5). L’une des particularités de l’imagerie haute
résolution est que l’information réside principalement dans la géométrie de l’image ; ainsi, un
rond-point y sera mieux caractérisé par sa forme que par sa texture.

Nous avons choisi de ne prendre en compte que l’aspect géométrique des objets considérés,
sans tenir compte de la radiométrie, de la texture, etc. Cela a des avantages car le système est
alors indépendant de la bande spectrale ou de la saison à laquelle sont prises les images.

De plus, nous avons adopté une approche qui consiste à explorer l’image à analyser de
façon séquentielle et travailler avec des vignettes de taille 100 pixels × 100 pixels. Sur chaque
vignette, nous demandons au système de déterminer la classe de l’objet centré dans la zone
d’analyse. Pour ce faire, nous utilisons une procédure de classification supervisée à partir d’un
apprentissage sur une base d’exemples.

Ainsi, la reconnaissance d’objets au sens où nous l’entendons consiste à effectuer une clas-
sification de l’objet présent dans une fenêtre d’analyse et ce à partir d’une caractérisation de la
géométrie de l’imagette.

Ce travail a été réalisé avec l’aide de plusieurs stagiaires : Olivier Caignart, Léonard Potier
et Jérome Tagnères. Les résultats obtenus ont donné lieu à un article de revue [15].

3.2 Classes d’objets

Nous avons choisi de nous intéresser à des objets qui peuvent être utiles dans les applica-
tions de cartographie rapide. Les classes choisies sont les suivantes :

1. BT bâtiments isolés ;

2. CH chemins ;

3. CR croisements ;

4. PT ponts ;

5. RD routes départementales ;

6. RN routes nationales ;

7. RP ronds-point ;

37
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8. RS routes secondaires ;

9. VF voies ferrées ;

10. ZP zones pavillonnaires.

Par ailleurs, nous avons ajouté une 11e classe d’objets :
– AU autres.
Il faut noter que la prise en compte des routes dans la liste des classes nous sert à mieux

caractériser la classe de rejet, mais qu’en aucun cas nous avons envisagé de faire une détec-
tion de routes avec l’approche de reconnaissance d’objets décrite dans ce document. En effet,
d’autres techniques de détection de routes beaucoup plus efficaces existent dans la littérature
[7]. Il en est de même pour la détection de l’urbain dense, où des approches basées sur les
textures donnent des résultats satisfaisants [25].

3.3 Chaîne de traitement

La chaîne de traitement comprend trois étapes :

1. L’apprentissage est réalisé à partir d’un pourcentage des imagettes ; ce pourcentage peut-
être fixé à n’importe quelle valeur. On détermine le vecteur caractéristique (ou vecteur
des descripteurs) de chacune d’elles à partir de différents traitements (moments com-
plexes, transformée de Fourier-Mellin, etc.), puis on fournit les vecteurs ainsi déterminés
au classifieur qui va déterminer la surface de séparation optimale pour chacun des cou-
ples de classes.

2. Le test de performances est à son tour effectué, à partir des imagettes restantes. On déter-
mine là encore les vecteurs caractéristiques, puis on les soumet au classifieur selon la
stratégie « un contre un » présentée un peu plus loin.

3. L’application à une image complète consiste à essayer de reconnaître les objets dans une
image de grande taille par balayage séquentiel et application du système de classification
issu de l’apprentissage. Cette étape n’a pas été mise en œuvre dans la chaîne, mais nous
avons travaillé sur des techniques de focalisation qui permettent de réduire la zone de
l’image à explorer [27].

Les deux premières étapes sont représentées sur la figure 3.1.

3.4 Description des imagettes

La figure 3.2 illustre l’obtention du vecteur caractéristique de dimension N pour chacune
des imagettes ; voici la signification des quatre étapes apparentes :

– Étape 1 imagette d’origine ;
– Étape 2 extraction d’information ;
– Étape 3 calcul des vecteurs des différents traitements ;
– Étape 4 concaténation pour former le vecteur caractéristique.
Les études sur la sélection de primitives n’ont pas permis de réduire de façon significative

le nombre de composantes du vecteur descripteur. La robustesse des SVM au phénomène de
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la géométrie
Carcatérisation de

Classe 1 Classe N

la géométrie
Extraction de

Images originales
Géométrie Apprentissage

SVM 1#2 SVM 2#3

SVM 1#N SVM K#N

Base de SVM

(a) Apprentissage

la géométrie
Carcatérisation de

SVM 1#2 SVM 2#3

SVM 1#N SVM K#N

Base de SVM

Classificationla géométrie
Extraction de

Géométrie

Image à classer
Vecteur de descripteurs

Classe de l’image

(b) Test de performances

Figure 3.1: Les deux étapes de la chaîne de traitement.

Hughes – l’augmentation de la dimensionalité de l’espace de descripteurs nécessiterait beau-
coup d’échantillons– nous a permis d’obtenir des résultats satisfaisants.

3.5 Résultats

La matrice de confusion 3.1 montre un exemple de performances du système mis en place
pour la détection de bâtiments isolés, rond-points et ponts.
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1
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3
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Figure 3.2: Obtention du vecteur caractéristique.
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Table 3.1: Matrice de confusion

BT RP AU PT Pnd
BT 92.93 1.30 5.23 0.52 7.06
RP 4.01 80.80 4.91 10.26 19.19
AU 10.59 5.57 79.73 4.08 20.26
PT 2.29 8.97 2.29 86.43 13.56
Pfa 5.63 5.28 4.14 4.96





4 Raisonnement spatial pour l’interprétation de

scènes

4.1 Motivation

L’utilisation de primitives de bas niveau comme celles utilisées dans le chapitre 3 ne permet
pas de décrire de façon efficace des objets complexes ou composites. Dans les images à réso-
lution métrique et sub-métrique, beaucoup d’objets deviennent des objets composites. Cette
recherche a donc été motivée par les activités de préparation à l’utilisation des images Pléi-
ades.

La diversité des objets d’intérêt identifiées par les utilisateurs thématiques impliqués dans
le Programme préparatoire Orfeo a mis en évidence que, si on voulait échapper à une mise
en oeuvre de chaînes spécifiques par type d’objet, des outils puissants de description à haut
niveau d’abstraction sémantique étaient nécessaires. Nous nous sommes donc orientés vers les
outils de description qualitative.

Ces outils peuvent être classés en 2 grandes familles :

1. Approches qualitatives du raisonnement métrique : on introduit l’incertitude et l’impré-
cision dans des descripteurs spatiaux classiques.

2. Approches topologiques : représentation qualitative de l’espace.

Nous avons commencé nos travaux par le 2ème point ci dessus, notamment sur l’utilisation
du Region Connexion Calculus (RCC) et ses extensions (stage de Julien Michel et études associées
[18] et thèse d’Ahed Alboody [1]). Puis nous avons aussi abordé les approches qualitatives du
raisonnement métrique via les relations spatiales floues (thèse de Carolina Vanegas [40]).

4.2 Region connection calculus et son extension

4.2.1 Le RCC-8

Le Region Connection Calculus [13] est fondé sur la notion de connexion entre couples de
régions de l’espace. Ces connexions appartiennent à un ensemble fini de possibilités. Différents
RCCs peuvent donc être obtenus en fonction du nombre de connexions considérées. Un de ces
systèmes, le RCC-8, est spécialement intéressant, car il est composé d’un ensemble de relations
exhaustives et mutuellement exclusives. Ces propriétés rendent le raisonnement plus simple.
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La figure 4.1 montre les 8 relations qui vont de la déconnexion (DC) jusqu’à l’équivalence
(EQ) en passant par la connexion externe (EC), le recouvrement partiel (PO), la partie propre
tangentielle (TPP), la non tangentielle (NTPP) et les inverses de ces 2 dernières (TPPi et NTPPi).

Figure 4.1: Relations du RCC-8

Ces relations sont symétriques à l’exception de TPP et NTPP, d’où le besoin de prendre en
compte leurs inverses. Dans le cas contraire, on parle de RCC-6. Si on ne prend pas en compte
l’inclusion tangentielle, on parle de RCC-5.

Le raisonnement sur les relations du RCC-8 est facilité par la possibilité de déduire la re-
lation reliant 2 régions a et c à partir de la connaissance des relations reliant a et b et b et c.
La table de composition 4.1 synthétise cette information. Les cases vides indiquent qu’il est
impossible d’inférer une quelconque information.

4.2.2 La reconnaissance d’objets avec le RCC-8

Après quelques travaux prospectifs sur la pertinence du RCC-8 pour décrire des objets
complexes, nous avons abordé le problème de la reconnaissance d’objets.

4.2.2.1 La segmentation

Le point de départ du calcul des relations spatiales est l’ensemble de régions de l’espace
à analyser. Ceci implique une première étape de segmentation d’images. Le choix d’un algo-
rithme de segmentation n’est pas trivial, surtout si l’on envisage cela dans un contexte automa-
tique.

Afin d’exploiter un maximum de relations du RCC-8, on ne peut pas utiliser des segmen-
tations qui donnent une partition simple de l’image où chaque pixel appartient à une seule ré-
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Table 4.1: Table de composition du RCC-8

R1 \R2 DC EC PO TPP NTPP TPPi NTPPi EQ

DC DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP

DC DC DC

EC DC, EC,
PO, TPPi,
NTPPi

DC, EC,
PO, TPP,
TPPi, EQ

DC, EC,
PO, TPP,
NTPP

EC, PO,
TPP, NTPP

PO, TPP,
NTPP

DC, EC DC EC

PO DC, EC,
PO, TPPi,
NTPPi

DC, EC,
PO, TPPi,
NTPPi

PO, TPP,
NTPP

PO, TPP,
NTPP

DC, EC,
PO, TPPi,
NTPPi

DC, EC,
PO, TPPi,
NTPPi

PO

TPP DC DC, EC DC, EC,
PO, TPP,
NTPP

TPP, NTPP NTPP DC, EC,
PO, TPP,
TPPi, EQ

DC, EC,
PO, TPPi,
NTPPi

TPP

NTPP DC DC DC, EC,
PO, TPP,
NTPP

NTPP NTPP DC, EC,
PO, TPP,
NTPP

NTPP

TPPi DC, EC,
PO, TPPi,
NTPPi

EC, PO,
TPPi,
NTPPi

PO, TPPi,
NTPPi

PO, TPP,
TPPi, EQ

PO, TPP,
NTPP

TPPi,
NTPPi

NTPPi TPPi

NTPPi DC, EC,
PO, TPPi,
NTPPi

PO, TPPi,
NTPPi

PO, TPPi,
NTPPi

PO, TPPi,
NTPPi

PO, TPP,
NTPP,
TPPi,
NTPPi, EQ

NTPPi NTPPi NTPPi

EQ DC EC PO TPP NTPP TPPi NTPPi EQ

gion. En effet, dans ce cas, les seules relations présentes seraient EC et DC. Nous nous sommes
donc orientés vers des techniques de segmentation multi-échelles.

Le premier choix a été celui de la pyramide morphologique [23], qui a rapidement montré
ses limites, notamment en termes de distorsion des régions à cause de l’élément structurant.
Nous avons ensuite utilisé les profils morphologiques de Pesaresi et Benediktsson [28] qui ont
donné des résultats beaucoup moins bruités.

A la fin de l’étape de segmentation, nous obtenons une suite de segmentations, en fonc-
tion des échelles. Nous avons choisi de représenter ce résultat sous forme de graphe où chaque
noeud correspond à une région (toutes échelles confondues) et les arêtes représentent les rela-
tions au sens du RCC-8.

Afin de rendre la visualisation des résultats exploitable, les régions sont représentées à des
niveaux différents en fonction de leur échelle d’extraction et la relation DC n’est pas représen-
tée. Un exemple de ce type de représentation est donné dans la figure 4.2.

4.2.2.2 Matching de graphes

La représentation sous forme de graphe d’une scène permet de mettre en place de façon
aisée des techniques de reconnaissance d’objets. L’idée de base consiste à disposer d’un graphe
qui modélise l’objet à reconnaître, puis à faire de la mise en correspondance de (sous-)graphes
avec le graphe représentant la scène dans laquelle on veut faire la reconnaissance.

Un point intéressant à souligner est que le graphe de l’objet à reconnaître peut être obtenu à
partir d’exemples (imagettes contenant des objets de la classe d’intérêt), mais il peut être aussi
synthétique, c’est à dire généré à partir d’une description éventuellement linguistique.

Cette mise en correspondance de graphes suppose l’existence d’une métrique pour com-
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(a) Scène originale (b) Graphe de la scène

Figure 4.2: Exemple de graphe à 6 niveaux sur un extrait d’image Quickbird à 60 cm. de
résolution.

parer les graphes. On dispose ici d’un degré de liberté très utile, car cette métrique peut se
limiter à comparer la structure des graphes et les étiquettes des arêtes (relations entre les ré-
gions), mais elle peut aller beaucoup plus loin.

Nous avons mis en place une métrique originale qui compare aussi les régions (en termes
de géométrie – forme, taille – et radiométrie). Ce type de métrique a 2 avantages :

1. Elle permet de trouver des objets avec un degré de ressemblance qui peut être choisi
(privilégier la géométrie au lieu de la radiométrie, par exemple).

2. La comparaison de régions permet de façon rapide la sélection de régions candidates
pour le matching sans avoir à utiliser les homéomorphismes entre les graphes dans tous
les cas.

Le lecteur peut se référer à la publication [18] pour des exemples de résultats.

4.2.3 Extensions du RCC-8

Une fois que nous disposons d’une représentation de la scène en termes de graphes de
régions et de relations spatiales, l’origine de ces régions n’est pas importante. Ceci ouvre la
porte à l’utilisation de ce formalisme sur d’autres types de données que les images.

Dans le domaine de la télédétection, l’autre type de donné qui peut bénéficier de ce type de
représentation sont les bases de données géographiques sous forme de donnée vecteur.

Dans la communauté géomatique, l’utilisation de la topologie est fréquente pour l’analyse
des données.

Nous avons souhaité utiliser ce qui avait été développé pour les images à haute résolution
spatiale pour les bases de données géographiques et pour la comparaison entre ces bases et les
images.
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Dans la thèse d’Ahed Alboody, les travaux se sont orientés vers l’enrichissement du RCC-8.
En effet, les régions issues des bases de données géographiques, sont presque exclusivement
reliées par des relations DC et EC, ce qui limite l’expressivité d’une analyse à base de RCC-8.
Nous avons travaillé sur la spécialisation des relations du RCC-8 afin de prendre en compte le
nombre d’intersections entre les régions (lignes et points).

Ceci a permis de générer un grand nombre de relations possibles entre les régions. Ces
relations ont été appliquées à la détection de changements entre images et bases de données.

Une incursion dans le domaine du flou a aussi été réalisée.

4.3 Les relations spatiales floues

Les relations de connexion modélisées par le Region Connection Calculus, même avec les ex-
tensions proposées dans la thèse d’Ahed Alboody, restent d’un niveau sémantique relativement
peu élevé.

Lors qu’on essaie de décrire des objets complexes, il est utile de travailler à un niveau d’ab-
straction plus élevé qui se rapproche des descriptions linguistiques qui peuvent être élaborées
par un interprète humain.

Les notions de parallélisme, d’alignement, d’entourage ou de traverse permettent de con-
struire des descriptions comme « la maison est entre le jardin et la route », « les bateaux son
alignés le long du quai », « le jardin entoure la piscine » ou « le chemin traverse le parc ».

Cependant, quand on essaie de mesurer ces relations entre les objets d’une image, on ne
peut pas se limiter à des réponses binaires du type « les objets sont parallèles ». Toutes les
notions citées plus haut peuvent être accompagnées d’un degré de satisfaction.

Ces réflexions ont été le point de départ des travaux de recherche menés dans la thèse de
Carolina Vanegas que j’ai co-encadrée avec Isabelle Bloch.

4.3.1 Exemple de relation spatiale : les objets alignés

Parmi les relations spatiales floues développées dans la thèse de Carolina Vanegas, je pro-
pose ici un zoom sur l’alignement d’objets.

On suppose que l’image a été segmentée et nous construisons un graphe d’adjacence des
objets de l’image. Nous construisons aussi son graphe dual qui contiendra de l’information sur
l’orientation relative des objets. Les groupes d’objets satisfaisant un critère flou sur leur aligne-
ment local seront extraits du graphe. Ces groupes sont des candidats pour les alignements
globaux.

L’outil choisi pour mesurer l’orientation relative entre 2 objets, est l’histogramme d’orien-
tations défini comme suit : Soient a et b 2 objets de l’image I, l’histogramme des angles entre
a et b (de a par rapport à b) est obtenu en calculant pour chaque paire de points pa ∈ a et
pb ∈ b l’angle entre le segment qui les unit et l’axe horizontal, qui est noté ∠(pa,pb). Ces angles
permettent de construire un histogramme normalisé :

Ha(b)(θ) =

∑
pa∈a,pb∈b|∠(pa,pb)=θ 1

maxφ∈[0,2π)
∑
pa∈a,pb∈b|∠(pa,pb)=φ 1

. (4.1)
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Afin de déterminer si un objet a est dans une certaine direction par rapport à un objet b
– par exemple « à la droite de » – nous pouvons calculer Ha(b) et le comparer à un modèle
d’histogramme représentant la notion recherchée.

L’histogramme d’orientations entre 2 objets par rapport à l’axe horizontal est défini comme
l’histogramme d’angles entre ces 2 objets, calculé modulo π et de support π. Dans le cas où
a et b sont des objets flous avec fonctions d’appartenance µa : I → [0,1] et µb : I → [0,1],
respectivement, l’histogramme d’orientations devient :

O(a,b)(θ) =

∑
pa,pb∈I|mod(∠(pa,pb),π)=θ µa(pa)∧µb(pb)

maxφ∈[0,π)
∑
pa,pb∈I|mod(∠(pa,pb),π)=φµa(pa)∧µb(pb)

, (4.2)

où ∧ est une T-norme.
Afin de mesurer la similarité entre 2 histogrammes d’orientation, il faut considérer l’im-

précision qui est liée à la comparaison d’angles similaires. Ceci est fait à l’aide de dilatations
floues des histogrammes avec un élément structurant ν0 approprié. On peut ensuite mesurer
la similarité entre ces 2 histogrammes en prenant le maximum de leur intersection.

sim(O(a,b),O(c,d)) = max
θ∈[0,π)

[
Dν0

(O(a,b))∧Dν0
(O(c,d))

]
(θ), (4.3)

où ∧ est une T-norme et Dν0
(µ)(θ) = supθ̃∈[0,π[ min(µ(θ̃),ν0(θ − θ̃)) est la dilatation floue. L’ex-

tension à la mesure de similarité de plusieurs histogrammes est directe :

sim (O(a0,b0), . . . ,O(aN ,bN )) = max
θ∈[0,π[

N∧
i=0

Dν0
(O(ai ,bi))(θ). (4.4)

On peut ensuite définir les notions d’alignement global et alignement local. Supposons que
nous disposons d’une relation de voisinage entre 2 objets Neigh(a,b). On dit qu’un groupe
d’objets est globalement aligné si tous ses membres sont connectés par Neigh et il existe un
angle θ tel que chaque membre du groupe voit les autres membres dans cette direction θ ou
θ +π. Le degré d’alignement global est défini comme ceci :

Definition 4.3.1 Soit S = {a0, . . . , aN }, avec N ≥ 3, un groupe d’objets dans I, connectés par Neigh.
Le degré d’alignement global de S est donné par :

µALIG(S) = sim (O(a0,S \ {a0}), . . . ,O(aN ,S \ {aN })) . (4.5)

Un groupe S avec µALIG(S) = β est globalement aligné avec degré β.
Un groupe S = {a0, . . . , aN } est localement aligné avec un degré β, si pour chaque chaque

couple de couples d’objets voisins ayant un objet en commun, les orientations entre les objets
de chaque couple sont similaires avec un degré β et si le groupe est connecté par la relation
Neigh. Autrement dit, un groupe S avec |S | ≥ 3 est localement aligné avec un degré β s’il
satisfait les relations suivantes :

R1 : ∀x,y,z (Neigh(x,y)∧Neigh(y,z))⇒ (sim(O(x,y),O(y,z)) ≥ β)

R2 : ∀a,b ∃x0, . . . ,xm for m > 1 such that x0 = a,xm = b and
m−1∧
i=0

Neigh(xi ,xi+1)
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Avec ces définitions et l’utilisation de graphes d’adjacence que nous ne décrivons pas ici, on
peut obtenir des résultats très intéressants sur des images réelles. Un exemple est donné sur la
figure 4.3 où des groupes de bâtiments globalement alignés sont détectés.

(a) Image originale (b) Bâtiments segmentés (c) Sous-ensembles de
bâtiments alignés

Figure 4.3: Détection d’objets globalement alignés avec un degré supérieur à 0.9.

4.3.2 Interprétation de scènes

Une fois qu’un ensemble de relations spatiales floues est disponible, il se pose le problème
de comment les utiliser pour faire de l’interprétation de scènes. D’une façon similaire à ce
qui a été présenté pour les relations du RCC-8, on peut faire de la mise en correspondance de
modèles d’objet avec les graphes extraits à partir de la scène à interpréter.

Cependant, cette approche trouve vite des limites de complexité dans le cas des relations
spatiales floues présentées dans cette partie du travail. En effet, étant donné qu’on veut représen-
ter des connaissances d’un niveau sémantique élevé, il faut des outils de représentation des
connaissances. Dans le cas de l’interprétation d’images à haute résolution, les concepts ma-
nipulés sont bien représentés par des description linguistiques, car ils relèvent souvent d’un
travail d’interprétation humaine.

C’est pourquoi, pour réaliser l’interprétation des images en utilisant les relations spatiales
floues, nous avons choisi l’approche des systèmes à base de connaissances et plus particulière-
ment les graphes conceptuels. Le choix de cet outil par rapport aux logiques de description
a été motivé par l’aisance de la représentation graphique associée qui permet de construire
facilement des modèles des concepts d’intérêt.

Afin d’utiliser les graphes conceptuels, il est nécessaire de disposer des éléments suivants :

1. Une hiérarchie de concepts : ceci correspond à une nomenclature de classification de
type Corine Land Cover, par exemple. Dans notre cas, des terminologies qui ne sont pas
normalisées ont été utilisées. Ceci est dû au fait qu’il n’existe pas de standard dans ce
domaine pour les images à haute résolution spatiale.

2. Une hiérarchie de relations : des hiérarchies de relations spatiales disponibles dans la
littérature – elles organisent les relations en métriques et topologiques et leurs sous classes
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distance et directionnelles et adjacence, recouvrement, etc. – ont été étendues pour y inclure
les relations floues développées ici.

3. Les graphes des concepts d’intérêt qui seront recherchés dans les images.

Le problème de recherche de concepts d’intérêt dans une image peut être abordé avec les
approches suivantes, organisées par difficulté croissante :

1. Image dont les régions sont étiquetées et pour lesquelles on ne considère que des relations
non floues.

2. Image étiquetée en considérant les relations floues.

3. Image non étiquetée et relations floues.

La notion d’étiquette correspond ici à l’identification du concept associé à chaque région de
l’image (classification suivant la nomenclature hiérarchique).

Une fois que la hiérarchie de concepts, la hiérarchie de relations et les graphes conceptuels
des objets d’intérêt sont disponibles, on peut mettre en oeuvre la recherche des objets dans des
scènes complexes.

L’approche qui a été choisie pour rechercher le graphe d’un objet d’intérêt dan une im-
age est celle des CSP (Constraint Satisfaction Problems). Un CSP [3], est défini par le triplet
P = 〈X ,D,C〉 où X est l’ensemble de variables qui représente une caractéristique des objets du
problème – les noeuds du graphe conceptuel dans notre cas –,D est l’ensemble représentant les
valeurs possibles des variables – les régions de l’image – et C sont les contraintes du problème
– les relations spatiales.

Afin d’exploiter les relations spatiales floues, nous avons utilisé les Fuzzy CSP [10].



5 Comparaison image/base de données

5.1 Introduction

Un des besoins principaux identifié avec les utilisateurs thématiques du Programme pré-
paratoire Orfeo a été la mise à jour de bases de données cartographiques.

On peut, à juste titre, se poser la question de la nouveauté de ce besoin quand l’Institut
géographique national (IGN) mène cette activité de façon routinière et à partir d’imagerie aéri-
enne.

Le travail avec des utilisateurs nous a permis de constater que leur besoin était différent
de celui qui est rempli par l’IGN. En effet, beaucoup d’utilisateurs travaillent sur des nomen-
clatures différentes de celles normalisées par l’IGN (BD Topo, BD Ortho) et aussi les données
utilisées en entrée sont-elles différentes de la photographie aérienne à 25 cm de résolution.

Dans le travail de thèse de Vincent Poulain, nous avons voulu traiter le problème de la
mise à jour de bases de données cartographiques à partir d’imagerie satellitaire en faisant un
minimum d’hypothèses sur les données en entrée et sur les nomenclatures à utiliser.

Étant donné que ce travail a été réalisé dans le cadre du Programme Orfeo, les données
image privilégiées étaient celles de type Pléiades et Cosmo Skymed, mais nous avons consid-
érée que d’autres capteurs seraient aussi disponibles. Nous avons donc considéré des données
optiques et SAR avec des résolutions allant de 60 cm jusqu’à 3 m. Ceci comprend des cap-
teurs comme Pléaides, Quickbird, Ikonos, Spot 5, Formosat-2 pour l’optique et Cosmo Skymed,
TerraSAR-X et Radarsat-2 pour le SAR.

5.2 Architecture globale

Le problème est posé de la façon suivante. On dispose d’une ou plusieurs images acquises
sur une période récente. On souhaite, soit mettre à jour une base de données cartographique
existante et plus ancienne que les images acquises, soit créer une nouvelle base de données
(pas de mise à jour).

La figure 5.1 présente l’architecture générique mise en oeuvre. La première étape est une
mise en correspondance géométrique des données disponibles. Cette mise en correspondance
peut être grossière, car les traitements qui seront mis en place par la suite sont robustes à des
légers décalages.

Il faut noter que nous avons aussi travaillé sur le recalage optique/SAR à haute résolution
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pendant les travaux de projet de fin d’études de Jan Wegner [41, 42]. Mais ces travaux ne seront
pas abordés ici.
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Figure 5.1: Architecture générique d’un chaîne de mise à jour de bases de données car-
tographiques.

Cette chaîne de traitement ne travaille que sur un type d’objet cartographique à la fois,
mais elle peut être instanciée pour différents types d’objets avec peu de modification. Pendant
la thèse de Vincent Poulain, nous avons traité 2 types d’objets : les bâtiments et les routes. Ceci
a permis de valider la généricité de l’approche, car ce sont 2 types d’objets très différents en
termes de propriétés radiométriques et géométriques.

La première étape des traitements consiste à extraire un ensemble de descripteurs qui
aideront à décrire les objets. Nous nous sommes appuyés ici sur la multitude de travaux exis-
tants dans la littérature et leurs mises en oeuvre disponibles notamment dans l’Orfeo Toolbox.

Ensuite, 2 cas sont possibles : une base de données existe et doit être mise à jour ou il n’y
a pas de base de données et elle doit être créée. Dans le premier cas, on procède d’abord à
vérifier l’existence, dans les images, des objets de la base de données. Dans le cas où il n’y a
pas de base de données, on procède directement à la détection de nouveaux objets. Cette étape
est aussi réalisée dans le cas où une base de données existe, avec la différence que, suite à la
vérification de la base de données, on peut ajuster les paramètres des algorithmes d’extraction
de nouveaux objets par apprentissage sur la base de données.

Les étapes de vérification et de détection de nouveaux objets sont en réalité très similaires.
La seule différence réside dans le fait que, dans la détection de nouveaux objets, on doit générer
des hypothèses d’objets, c’est à dire des objets qui sont potentiellement présents dans l’image.
Ces hypothèses d’objets seront ensuite traitées comme s’il s’agissait d’une vérification d’objets
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de la base de données.
La façon la plus simple de générer des hypothèses d’objets est de réaliser une segmenta-

tion des images et considérer les régions ainsi obtenues comme des candidats. Afin de ne pas
dépendre de la qualité de la segmentation (sur- ou sous-segmentation), des segmentations à
plusieurs échelles sont utilisées.

Jusqu’ici, tout est générique et il n’y a pas de brique dans cette chaîne qui soit spécifique à
un type d’objet.

5.3 Éléments focaux

La façon d’introduire une description des objets d’intérêt dans la chaîne passe par une
description d’un niveau sémantique assez élevé. Nous avons décidé d’utiliser une description
qui s’appuie sur les descripteurs précédemment extraits.

Par exemple, un bâtiment peut être décrit par « région avec des frontières linéaires sans
végétation, projetant une ombre et ayant un angle droit entre le sol et les murs ». Cette de-
scription peut être combinée avec des descripteurs image comme les indices de végétation, les
détecteurs de lignes sur les images SAR, les détecteurs d’ombres, etc. pour donner la représen-
tation graphique de la figure 5.2, qu’on appelle éléments focaux.

No vegetation

Edge

Linear boundary

Shadow border

SAR line

Building

Figure 5.2: Exemple d’éléments focaux pour l’objet « bâtiment ».

On constate donc la simplicité de la création de modèles d’objets. Cependant, une descrip-
tion aussi simple, ne permet pas de détecter des objets avec une précision suffisante. Ceci est dû
au fait que la description linguistique, comme nous l’avons montré dans la partie 4.3, est sou-
vent entachée d’imprécision. Par exemple, dans le cas des bâtiments, dire qu’ils ne contiennent
pas de végétation n’est pas toujours juste.

Il a fallu donc se doter d’outils mathématiques pour représenter cette imprécision, mais
aussi l’incertitude.

5.4 Utilisation de la théorie des croyances

Nous avons choisi d’utiliser la théorie des croyances [36], ou modèle de Dempster-Shafer.
Dans ce cadre, on attribue une certaine croyance aux hypothèses possibles. L’ensemble de toutes
les hypothèses possibles est appelé cadre de discernement, Θ. On appelle P(Θ) l’ensemble de
tous les sous-ensembles de Θ. Ces sous-ensembles sont appelés propositions.

La quantité de preuve qu’une source d’information apporte à une proposition est représen-
tée par une fonction de masse, FM. Une FM m satisfait les propriétés suivantes :
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m : P(Θ)→ [0,1],
∑
Ai⊆Θ

m(Ai) = 1,m(∅) = 0. (5.1)

Les sous-ensembles auxquels une source apporte de la croyance sont les ensembles focaux
de la source.

Dans notre cas, chaque ensemble focal correspond à chaque hypothèse pour laquelle un
descripteur apporte de la croyance. Ainsi, par exemple, pour le descripteur végétation, nous
définissons 3 ensembles focaux : présence de végétation, absence de végétation et incertitude.

Il faut ensuite définir les fonctions de masse pour chaque descripteur. Pour la prise de
décision sur, par exemple, l’existence d’un bâtiment, sera déterminé par fusion d’informations
concernant tous les descripteurs associés. De façon concrète, cette fusion combine les fonctions
de masse à l’aide de la règle orthogonale de Dempster-Shafer :

m12(P ) =m1 ⊕m2(P ) =
1

1−κ

∑
A∩B=P

m1(A)m2(B) (5.2)

avec κ =
∑
A∩B=∅m1(A)m2(B) représentant le degré de conflit entre les sources. À partir de cette

fonction de masse associée à l’hypothèse qui nous intéresse (bâtiment, par exemple), on peut
calculer la croyance (notée Bel pour belief ) et la plausibilité qui constituent respectivement les
bornes supérieure et inférieure d’un intervalle de probabilité :

Bel(P ) =
∑
A⊆P

m(A). (5.3)

Pl(P ) =
∑

A|A∩P,∅
m(A). (5.4)

Nous attribuons à chaque objet un score qui est la moyenne de ces 2 grandeurs, même
si autres choix seraient possibles. La comparaison de ce score à un seuil permet la prise de
décision.

La représentation l’imprécision et l’incertitude liée aux descripteurs et aux éléments fo-
caux est faite à l’aide des fonctions de masse. Nous avons besoin, pour chaque élément focal,
de 3 fonctions de masse : celle décrivant l’hypothèse positive (ex. présence de végétation), celle
décrivant l’hypothèse négative (ex. absence de végétation) et celle représentant l’incertitude.
Le support de ces fonctions est la valeur numérique du descripteur associé (ex. indice de végé-
tation).

La figure 5.3 montre un modèle de fonctions de masse pour un descripteur générique.
Ces fonctions sont complètement déterminées par le vecteur de paramètres (a,b,c,d). Pour

chaque descripteur, ces paramètres ont été optimisés en utilisant des données réelles et une
fonction de coût combinant la croyance et la plausibilité.

Dans le cas de la mise à jour d’une base de données, la vérification se fait en utilisant les
fonctions de masse ainsi optimisées. La détection de nouveaux objets peut bénéficier d’une
nouvelle optimisation des paramètres en utilisant les objets vérifiés dans la base de données.
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Figure 5.3: Modèle de fonctions de masse.

Figure 5.4: Exemple de vérification d’une base de données de bâtiments.

5.5 Résultats

Nous montrons ici un exemple de résultats obtenus sur un jeu de données composé d’une
image de type Pléiades (multispectral 4 bandes à 70 cm.), d’une image de type Cosmo Skymed
(SAR bande X à 1 m.) et d’une base de données de bâtiments où ces derniers sont représentés
par leur emprise au sol.

La figure 5.4 montre les résultats obtenus en vérification. On a introduit des faux bâtiments
afin de mesurer les faux positifs et les vrais négatifs. Le code de couleurs est le suivant :

– en vert : les vrais positifs, c’est à dire, les vrais bâtiments détectés correctement ;
– en blanc : les vrais négatifs, c’est à dire, les faux bâtiments correctement non détectés ;
– en rouge : les faux négatifs, c’est à dire, les vrais bâtiments non détectés ;
– en bleu : les faux positifs, c’est à dire, les faux bâtiments détectés à tort.
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Figure 5.5: Exemple de détection de bâtiments.

La figure 5.5 montre un résultat de détection de bâtiments sans utilisation de base de don-
nées.



6 Perspectives de recherche

Comme il a pu être constaté tout au long des chapitres précédents, mes travaux de recherche
ont été guidés par les besoins du Cnes en ce qui concerne le traitement des images de ses cap-
teurs, que ce soit en valorisation quand ils existaient déjà, ou que ce soit en préparation à
l’utilisation.

Dès 2008, l’équipe du projet Venµs nous a sollicité pour des supports ponctuels sur le traite-
ment de séries multi-temporelles. Nous avons décidé de commencer un travail de fond sur le
traitement de ce type de données, car, peu après Venµs, le programme des Sentinelles de l’ESA
doit être opérationnel.

La caractéristique particulière de ce type de données est d’avoir un échantillonnage tem-
porel très fin – allant jusqu’à une acquisition tous les 2 ou 3 jours – tout en gardant une résolu-
tion spatiale élevée (de l’ordre de 10 m.) et une résolution spectrale très riche en optique (une
dizaine de bandes spectrales sur le visible et l’infra-rouge).

L’arrivée des données fournies par le programme des Sentinelles permettra le développe-
ment de services et d’applications qui ne peuvent être mis en place que grâce à une revisite
courte et systématique de la surface de la Terre.

Le défi principal posé par ces données est le passage à l’échelle des techniques et des ser-
vices actuels. Ce passage à l’échelle devra s’opérer sur les aspects suivants :

1. volume de données à gérer pour un site donnée ;

2. emprise et diversité spatiale – géographique – des zones traitées ;

3. assurance qualité des produits livrés.

6.1 Les produits attendus

Étant donné le contexte de passage à l’échelle cité ci-dessus, un certain niveau de standard-
isation peut être nécessaire. Trois familles de produits permettent de couvrir un grand nombre
de besoins :

1. Cartes d’occupation des sols

2. Cartes de variables climatiques essentielles (ECVs, GCOS Essential Climate Variables
Matrix)

3. Produits d’alerte aux changements
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Les cartes d’occupation des sols devront suivre des nomenclatures normalisées et qui vont
au delà de ce qui est utilisé à l’heure actuelle. La norme ISO/DIS 19144-2 Geographic informa-
tion - Classification systems – Part 2 : Land Cover Meta Language (LCML) semble être un candidat
approprié pour la mise en oeuvre de systèmes de classification opérationnels.

Pour ce qui concerne les ECVs, la difficulté majeure réside dans le choix des modèles et
des algorithmes qui permettront une estimation robuste et avec la fréquence de mise à jour
adéquate.

Enfin, les produits d’alerte aux changements n’ont pas beaucoup été mis en avant, mais ils
seront intéressants à plusieurs titres :

– ils peuvent être générés de façon plus simple que les cartes d’occupation des sols – le
problème étant plus simple – et peuvent apporter presque la même quantité d’informa-
tion qu’une carte d’occupation des sols (OS) si l’OS précédente est connue.

– ils peuvent être obtenus avec des données moins résolues spatialement et spectralement,
ce qui les rend intéressants en termes d’exigence de données [31] ; ils pourront donc être
générés de façon plus fréquente

En revanche, les algorithmes permettant d’exploiter ces potentialités n’existent pas ou sont
moins mûrs que les techniques de classification ou les méthodes d’estimation de ECVs.

6.2 Les contraintes

La disponibilité des données (images) et la définition de produits attendus ne doit pas faire
oublier les contraintes auxquelles un système opérationnel va être confronté.

– Il faudra des produits validés à échelle régionale, voire globale, ce qui demandera, au
moins dans un premier temps, de travailler sur des nomenclatures simplifiées.

– Le manque de données de référence, vérité terrain, etc. – nécessaires pour la mise au point
de méthodes, les apprentissages et les validations – demandera de travailler presque ex-
clusivement avec des approches non-supervisées. Ces approches devront tirer un maxi-
mum d’informations sur les connaissances a priori disponibles sur les phénomènes et les
processus observés. Ces connaissances peuvent être issues de la modélisation physique,
mais aussi de connaissances qualitatives et des règles de décision.

– Même si la capacité théorique d’acquisition d’images sera importante, il ne faut pas nég-
liger les limitations d’accès à la ressource (couverture nuageuse, temps de mise à disposi-
tion de la donnée, pannes éventuelles). Ceci est un élément crucial à prendre en compte
dans un système opérationnel.

– En rapport avec le point précédent, la cadence d’acquisition des données fera émerger
des besoins en termes d’accès quasi-temps-réel à l’information. Dans ce cadre, les ap-
proches simples et rapides seront à privilégier. Il faudra aussi concevoir des traitements
parallélisables pour bénéficier des améliorations des capacités des machines de calcul
(multi-processeurs, GPUs, etc.)
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6.3 Les solutions :

Pour répondre à l’attente des utilisateurs en termes de produits, de leur qualité et de leur
fréquence de mise à jour, il y a principalement 2 pistes à poursuivre : l’utilisation d’un maxi-
mum de capteurs disponibles et l’utilisation efficace d’informations exogènes aux données de
télédétection.

6.3.1 Modélisation de comportements temporels

La dimension temporelle doit être traitée de façon différente à celle de la dimension spa-
tiale des images. Le suivi des dynamiques temporelles est souvent la seule façon d’accéder
à certaines informations. Les techniques de description et manipulation de séries temporelles
doivent être capables de s’affranchir d’abord des problèmes d’échantillonnage irrégulier : même
si le satellite a un cycle régulier, les aléas de la couverture nuageuse rendent des images inutilis-
ables. Un autre problème qu’il faut prendre en compte est celui des comportements temporels
décalés ou distordus. C’est dans ce cadre que nous avons proposé la thèse de François Petitjean.

6.3.2 Le multi-capteur

Les algorithmes capables d’ingérer des données issues de capteurs différents permettront
d’augmenter la fréquence de mise à jour des produits. Ils doivent aussi permettre d’améliorer la
qualité de certains de ces produits ou même d’accéder à des grandeurs autrement inaccessibles,
mais nous n’abordons pas ces aspects ici. En effet, dans un cadre opérationnel, il faut envisager
les traitements multi-capteurs comme un mode dégradé quand la donnée nominale n’est pas
disponible, et non pas comme une exigence pour la livraison d’un produit.

Le terme multi-capteur est vague. Il peut être décliné à, au moins, 3 niveaux.

1. Capteurs de même classe : Venµs, Sentinelle-2, LDCM. On peut dans ces cas utiliser, avec
peu d’adaptation, les mêmes chaînes de traitement pour toutes les données.

2. Capteurs avec des résolutions différentes. À l’horizon sur lequel nous nous plaçons, les
exemples sont Sentinelle-2 avec Proba-V ou Sentinelle-3. On utilise ici la complémen-
tarité entre haute résolution spatiale/spectrale et très haute résolution temporelle pour
assurer une mise à jour très fréquente des informations. Des techniques spécifiques pour
la fusion multi-résolution doivent être développées.

3. Optique/SAR : typiquement Sentinelle-1 et Sentinelle-2. On essaiera ici de bénéficier
de l’aspect tous temps du SAR pour assurer une production systématique d’informa-
tions. Les propriétés physiques des 2 types de capteurs étant complètement différentes,
un niveau d’indirection devra être ajouté aux algorithmes (passage par des grandeurs
intermédiaires comme les classes ou les changements).

6.3.3 Les informations exogènes

L’utilisation de données exogènes dans la génération de produits à base d’imagerie satellite
est classique (MNT, carte de référence, donnée météo, etc.). Le terme information exogène va
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au delà de cette notion de donnée ancillaire en ajoutant 2 nouvelles composantes : les modèles
physiques et les connaissances du domaine.

6.3.3.1 Les modèles physiques

Leur utilisation pour l’assimilation des données de télédétection ne peut être envisagée que
pour l’estimation de variables physiques. Souvent, les modèles ne peuvent pas être envisagés
dans des contextes opérationnels à cause de leur coût de calcul ou de leur besoin de paramètres
non disponibles.

Nous envisageons ici leur utilisation comme outil de sélection de traitements. En effet, des
modèles simples – spatialisables – peuvent être utilisés pour décider quels sont les traitements
à mettre en place par la suite. Un exemple de ce type d’approche consiste à se servir de modèles
de croissance de la végétation pour réaliser un premier niveau de classification et pouvoir
ensuite utiliser des classifieurs spécialisés sur certaines familles de classes.

Les modèles à prendre peuvent être des types suivants :
– TSVA : transfert sol-végétation-atmosphère ;
– croissance/fonctionnement de la végétation ;
– réflectance (feuilles, sol) ;
– transfert radiatif ;
– capteur : bandes spectrales, fonction de transfert de modulation, etc.
Nous avons commencé à travailler sur ces aspects lors du séjour de Germain Forestier au

CNES [12, 11]. Une application de cette approche aux séries multi-temporelles a été dévelop-
pée pour comparer les performances de classification entre Formosat-2 et les futurs Venµs et
Sentinelle-2 [16].

6.3.3.2 Les connaissances du domaine

Il s’agit ici d’utiliser des informations décrivant les phénomènes et les processus d’intérêt,
mais sans passer par une modélisation physique ou mathématique. Sans rentrer, en tout cas
dans un premier temps, dans les domaines de la modélisation qualitative ou de la soft data
assimilation, on peut envisager d’utiliser des terminologies et des règles décrivant, par exemple,
les pratiques agricoles.

Comme dans le cas des modèles physiques, ce type de méthode est envisagée comme étape
préalable à la classification, mais elle peut être aussi utilisée pour valider/invalider des résul-
tats de classification.

6.4 La classification

Les méthodes de classification, notamment celles qui sont développées au CESBIO depuis
des années sont robustes et performantes. Des nouveaux développements sont en cours et
visent principalement à mettre en oeuvre des techniques de reconnaissance de classes (passage
entre l’étiquette non thématique issue d’une classification non-supervisée vers l’identification
du nom thématique de la classe).
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Nous nous intéressons ici à la stratégie à mettre en oeuvre pour utiliser ces méthodes dans
un environnement opérationnel, dont les contraintes ont été décrites plus haut. Cette stratégie
est composée des modules suivants :

1. Choix de la donnée à fournir à l’algorithme de classification : s’agit-il de réflectances,
d’indices, de variables estimées ?

2. Choix de la fenêtre temporelle à utiliser pour la génération de la classification : parmi les
images disponibles à un instant donné, quelles sont celles qui peuvent apporter le plus
d’information ? Comment aborder le compromis entre quantité d’information et volume
de données à traiter ?

3. Comment pondérer ou ajuster les résultats d’une classification en utilisant des données
de référence ?

4. Comment décomposer le problème de génération d’une carte d’occupation des sols en
sous-problèmes plus facilement traitables par les algorithmes de classification ?

6.5 La détection de changements

Pour certaines applications, il peut être très utile d’avoir un produit qui, même sans décrire
les classes d’occupation des sols, met en évidence les évolutions des surfaces. Ces évolutions
peuvent être analysées au niveau des réflectances observées, au niveau d’indices dérivées ou
par le biais d’autres grandeurs d’intérêt.

Ces produits d’analyse d’évolution des surfaces peuvent être contraints par une classifi-
cation existante. Par exemple, si l’on s’intéresse à l’étude du travail du sol, la détection de
changements peut être limitée à la classe sol nu issue d’une classification.

Inversement, un produit d’alerte aux changements peut être fourni en entrée d’une classi-
fication pour discriminer 2 classes très similaires, mais avec des évolutions temporelles légère-
ment différentes.

Les travaux existants en détection de changements sont souvent focalisés sur les problèmes
à 2 dates avec un changement abrupt entre les 2. Il faudra ici développer des techniques pou-
vant profiter d’un grand nombre d’images et éventuellement les étendre au cas multi-capteur
(notamment multi-échelles).
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7 Cursus professionnel

7.1 Formation

– 9/2000. Doctorat en Traitement du Signal et Télécommunications de l’Université de Rennes-
1 : Étude des signatures radar à la surface de l’océan de la topographie sous-marine.

– 9/1997. DEA Signal Télécommunications Image et Radar de l’Université de Rennes 1.
– 9/1997. Ingénieur Télécom, ENST Bretagne. Spécialité Signal et Images.
– 9/1997 Ingénieur Télécom, ETSET Barcelone, Université Polytechnique de Catalogne.

Spécialité Communications.

7.2 Expérience professionnelle

– Depuis 3/2010 : Chercheur au Centre d’études spatiales de la biosphère, CESBIO
– 12/2001-3/2010 : Ingénieur au Centre national d’études spatiales, CNES.

– Animateur du Volet méthodologique du Programme d’accompagnement ORFEO.
– Chef du projet ORFEO Toolbox.
– Responsable du Dossier d’axe technique OT4 : Méthodes d’extraction d’information des

images.
– Chargé de la R&D en extraction d’information des images de télédétection pour des

applications opérationnelles et multitemporelles :
– détection de changements ;
– reconnaissance d’objets ;
– mise en correspondance d’images multi-capteurs ;
– mesures de similarité.

– Chef de projet pour la Charte Internationale Espace et Catastrophes Majeures.
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nique de Grenoble. France.

8. Aurélie Allan-Grandvalet (Ingénieur) 2005. Mise en correspondance d’images de télédé-
tection sans modèle de prise de vue. École Supérieure de Chimie Physique Électronique
de Lyon. France.

9. Jérôme Tagnères (Master Professionnel), 2005. Reconnaissance d’objets dans les images à
haute résolution. Université Paul Sabatier - Toulouse 3.
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10. Julien Michel (Master Recherche), 2006. Raisonnement spatial pour l’analyse d’images à
haute résolution. École Nationale Supérieure des Télécommunications de Bretagne. Brest,
France.

11. Vincent Poulain (Master Recherche), 2007. Détection de changements entre images et
bases de données vectorielles. Institut National Polytechnique de Toulouse. Toulouse,
France.

12. Miarintsoa Ramanantsimiavona (Ingénieur), 2007. Intégration de modèles géométrique
de capteurs satellitaires dans l’ORFEO Toolbox. ENSEEIHT. Toulouse, France.

13. Jan Dirk Wegner (MSc), 2007. Fusion d’images optiques et radar à haute résolution spa-
tiale. Université de Hanovre, Allemagne.

14. Julien Osman (Ingénieur), 2008. Segmentation supervisée d’objets dans les images HR.
ENSIEG. Grenoble. France.

15. Christophe Lay (Ingénieur), 2008. Génération automatique de cartes d’occupation des
sols par classification SVM. ESTIA. Bayonne. France.

16. Eric Koun (Ingénieur), 2009. Détection de changements orientée objets. ENSIEG, Greno-
ble. France.

17. Malik Ciss (Ingénieur), 2009. Classification de séries d’images multi-temporelles. EN-
SEEIHT. Toulouse, France.

18. Benoît Beguet (Master Recherche), 2010. Détection, caractérisation et suivi de change-
ments d’état des sols résultants de pratiques agricoles. Institut EGID. Bordeaux. France.

9.2 Thèses de doctorat

1. Amandine Robin : Détection de changements et classification sous-pixéliques en imagerie
satellitaire. Dirigée par Sylvie Le Hégarat-Mascle et Lionel Moisan. Université Paris Descartes.
Soutenue le 21/05/2007. Co-encadrement (20%).

2. Florent Chatelain : Lois Gamma multivariées pour le traitement d’images radar. Dirigée par
Jean-Yves Tourneret. Institut National Polytechnique de Toulouse. Soutenue le 25/10/2007.
Co-encadrement (25%).

3. Tarek Habib : Mesures de similarités pour la détection de changements abrupts en imagerie
satellitaire multicapteurs. Dirigée par Jocelyn Chanussot et Grégoire Mercier. Institut Na-
tional Polytechnique de Grenoble. Soutenue le 2/12/2008. Co-encadrement (50%).

4. Vincent Poulain : Fusion d’images optique et radar à haute résolution pour la mise à jour de
bases de données cartographiques. Dirigée par Philippe Marthon et Jean-Yves Tourneret.
Institut National Polytechnique de Toulouse. Soutenue le 22/10/2010. Co-encadrement
(70%).

5. María Carolina Vanegas Orozco : Spatial relations and spatial reasoning for the interpreta-
tion of Earth observation images using a structural model. Dirigée par Isabelle Bloch. Télé-
com ParisTech. Soutenue le 13/01/2011. Co-encadrement (30%).
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6. Ahed Alboody : Analyse et Interprétation d’images de télédétection et intégration dans des
Systèmes d’Information Géographique. Dirigée par Florence Sèdes. Univertité Paul Sabatier
- Toulouse 3. Soutenance prévue en 2011. Co-encadrement (50%).

7. François Petitjean : Classification non supervisée de séries temporelles d’images satellites hétérogènes.
Dirigée par Pierre Gançarski. Université de Strasbourg. Soutenance prévue en 2012. Co-
encadrement (50%).





10 Participation à des modules d’enseignement

10.1 Traitement du signal radar

De 2001 à 2003 j’ai enseigné à l’ENST Bretagne un module de 12 heures sur le traitement
du signal radar. Les aspects abordés étaient :

– le bilan de liaison
– les formes d’onde
– les radars de détection
– les radars Doppler
– les radars imageurs

10.2 Traitement d’images radar

Depuis 2002 j’enseigne un module de 3 h sur le traitement des images SAR en 3ème an-
née à Supaéro et en 2ème année à l’ENSICA. Depuis 2009, ce module est aussi enseigné à
l’ENSEEIHT en 3ème année. Il présente les sujets suivants :

– la modélisation et le filtrage du speckle
– la détection (cibles, contours)
– la segmentation et la classification

10.3 Traitement d’images pour les risques

Suite à mes activités de recherche et développement sur le traitement d’images pour les
catastrophes naturelles, j’ai été sollicité à plusieurs reprises à réaliser des formations, typique-
ment sur une journée, sur ce sujet.

J’ai eu l’occasion de donner ces formations au GDTA à 2 reprises en 2003 et 2004.
Plus récemment, une formation pratique (sur le logiciel Monteverdi) a été mise en place à

Télécom Paristech dans le cadre des formations ATHENS.

10.4 Orfeo Toolbox

L’intérêt suscité par l’Orfeo Toolbox a crée une demande de formation pour des utilisateurs.
J’ai mis en place un programme de formation sur une durée de 3 à 4 jours qui comprend :
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– Pré-requis de programmation en C++
– Concepts et approche des traitements dans OTB
– Géométrie des images

– Modèles de capteur
– Recalage d’images
– Projections cartographiques
– Ortho-rectification

– Radiométrie des images
– Étalonnage absolu
– Corrections atmosphériques

– Extraction de primitives
– Indices radiométriques
– Statistiques, textures
– Moments géométriques
– Morphologie mathématique

– Segmentation d’images
– Ligne de partage des eaux
– Croissance de régions
– Mean-shift

– Classification d’images
– K-moyennes
– SVM
– Classification orientée objets

Cette formation a été dispensée à la Maison de la Télédétection, au CESBIO, à Télécom
ParisTech et à l’École Royale Militaire de Bruxelles. Elle a ensuite été sous-traitée à la société
C-S, titulaire du contrat de développement industriel de l’OTB.



11 Projets

Mes travaux de recherche ont eu des liens avec des projets en partenariat avec d’autres
organismes. J’en liste ici les principaux.

11.1 EEE-SPN (2002)

Le projet EEE-SPN (Exploitation d’ERS et ENVISAT en utilisant la technique des points
stables) a été financé par l’ESA avec l’objectif de développer des techniques intérférométriques
permettant d’utiliser de façon conjointe les données des 2 générations de satellites radar eu-
ropéens.

Le consortium de partenaires était composé de : Altamira Information, CNES, DLR et l’U-
niversité de Delft. Les travaux de ce projet ont donné lieu aux travaux publiés dans [21].

11.2 Robin (2005-2006)

Ce projet a eu comme objectifs de produire des banques d’images, des vérités terrain et des
comparaisons d’algorithmes pour la reconnaissance d’objets dans les images. Les approches
analysées ont été :

– la détection de classes d’objets ;
– la détection générique d’objets ;
– la reconnaissance d’objets ;
– la catégorisation d’images.
Le projet a été financé par les Ministères de la Défense et de la Recherche dans le cadre

Technovision. Le consortium de partenaires était composé de : Bertin technologies, CNES, Cy-
bernetix, DGA, EADS, INRIA, ONERA, MBDA, SAGEM et THALES.

Le projet a duré 2 ans. J’ai participé à la définition des spécifications d’une base d’images
d’objets cartographiques extraits de scènes Spot 5 et à la définition des épreuves d’évaluation
d’algorithmes.

11.3 GMOSS (2005-2008)

Global Monitoring for Security and Stability était une réseau d’excellence de la ligne aéronau-
tique et espace du 6ème PCRD.
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L’objectif de ce réseau a été de faire travailler ensemble les acteurs de la recherche dans le
domaine de la sécurité civile afin d’acquérir et de développer les connaissances et l’expérience
nécessaires à développer des capacités d’observation globale en utilisant l’imagerie satellitaire.
Les technologies et la recherche résidant dans le périmètre de GMOSS étaient :

1. Les méthodes, algorithmes et logiciels génériques pour l’interprétation automatique et la
visualisation d’images, y compris l’extraction de primitives, la reconnaissance d’objets et
la détection de changements.

2. Les technologies nécessaires à fournir :

a) la surveillance et le contrôle de traités internationaux sur les contrôla et la proliféra-
tion d’armes de destruction massive ;

b) l’estimation de la dynamique des populations à grande échelle ;

c) la surveillance d’infrastructures et de frontières ;

d) l’analyse de menaces à la sécurité des biens et des personnes et les besoins d’échanges
d’information entre décideurs pour la gestion de crise.

Le réseau était composé de 22 partenaires dont l’UNOSAT (United Nations Operational
SATellite applications programme), le DLR (agence aérospatiale allemande), l’EUSC (European
Satellite Center), le CEA, le CNES, l’École Royale Militaire de Bruxelles ou les sociétés privées
comme QinetiQ ou Definiens.

J’ai participé aux activités de recherche dans le domaine des outils et algorithmes génériques,
et plus particulièrement aux tâches sur l’extraction de primitives et la détection de change-
ments.

11.4 PREVIEW (2005-2008)

PREVIEW, Prevention Information and Early Warning (http ://www.preview-risk.com), était
un projet intégré financé par l’Union Européenne dans le cadre du 6ème PCRD. Son objectif
était de développer, au niveau européen, des nouveaux services de géo-information pour les
risques naturels et industriels.

Le projet comptait avec 58 partenaires de 15 pays impliquant des chercheurs, des agences
spatiales, des industriels et des utilisateurs comme les protections civiles.

Beaucoup d’activités de recherche sur la détection de changement, le recalage d’images
ainsi que la validation de la Chaîne Risques ont réalisées dans le cadre de PREVIEW.

11.5 SAFER (2009-2012)

SAFER (Services and Applications For Emergency Response) est un projet européen (7ème
PCRD) financé dans le cadre de GMES. Il sert à préparer la mise en oeuvre opérationnelle du
service GMES Emergency Response (http ://www.emergencyresponse.eu/).

L’objectif principal de SAFER est de fournir des capacités de cartographie rapide en réponse
à des évènements catastrophiques.

http://www.preview-risk.com
http://www.emergencyresponse.eu/
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Le consortium est constitué de 54 partenaires de 16 pays. Il constitue une suite logique au
projet PREVIEW.

Dans ma dernière année passée à SI/AP j’ai participé aux premier mois de ce projet sur le
même type de tâches qui m’ont occupé dans le cadre de PREVIEW.





12 Autres activités liées à la recherche

12.1 Organisation de séminaires et colloques

– De la séparation de sources à l’analyse en composantes indépendantes. Centres de Com-
pétences Techniques CNES. 28 Juin 2001. Toulouse.
– Présentation : Analyse multi-dimensionelle et ACI.

– Mesures de similarités en traitement des images. Centres de Compétences Techniques
CNES. 18 avril 2003. Toulouse.
– Présentation : Mesures de similarités multi-capteurs.

– Session Change Detection Techniques du IEEE International Geoscience and Remote Sensing
Symposium, Juin 2003.

– Non-gaussienneté, non-stationnarité et non-linéarité. Centres de Compétences Techniques
CNES. 21 juin 2004. Toulouse.
– Présentation : Non-gaussienneté en traitement du signal.

– Session Open Source Initiatives for Remote Sensing du IEEE International Geoscience and
Remote Sensing Symposium, Juillet 2009.

– Session Change Detection and Multitemporal Image Analysis du IEEE International Geo-
science and Remote Sensing Symposium, Juillet 2010.

– Tutoriel Pragmatic Remote Sensing - A hands-on approach dans le cadre du IEEE Interna-
tional Geoscience and Remote Sensing Symposium, Juillet 2010.

– Session Change Detection and Multitemporal Image Analysis du IEEE International Geo-
science and Remote Sensing Symposium, Juillet 2011.

12.2 Jurys de thèse

1. Virginie Amberg : Analyse de scènes péri-urbaines à partir d’images radar haute résolu-
tion – Application à l’extraction semi-automatique du réseau routier. Dirigée par Philippe
Marthon. Institut National Polytechnique de Toulouse. 10/11/2005.

2. Vincent Martin : Contribution des filtres LPTV et des techniques d’interpolation au tatouage
numérique. Dirigée par Bernard Lacaze et Marie Chabert. Institut National Polytechnique
de Toulouse. 28/11/2006.

3. Olivier D’hondt : Analyse spatiale de texture non stationnaire dans les images SAR. Dirigée
par Éric Pottier. Université de Rennes 1. 0/02/2006.
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4. Amandine Robin : Détection de changements et classification sous-pixéliques en imagerie
satellitaire. Dirigée par Sylvie Le Hégarat-Mascle et Lionel Moisan. Université Paris Descartes.
21/05/2007.

5. Florent Chatelain : Lois Gamma multivariées pour le traitement d’images radar. Dirigée par
Jean-Yves Toureneret. Institut National Polytechnique de Toulouse. 25/10/2007.

6. Mathieu Fauvel : Spectral and spatial methods for the classification of urban remote sensing
data. Dirigée par Jocelyn Chanussot et Jon Atli Benediktsson. Institut National Polytech-
nique de Grenoble. Novembre 2007.

7. Jérémie Jakubowicz : La recherche des alignements dans les images digitales et ses applica-
tions à l’imagerie satellitaire. Dirigée par Jean-Michel Morel. École Normale Supérieure de
Cachan. 30/11/2007.

8. Avik Bhattacharya : Indexing of Satellite Images Using Structural Information. Dirigée par
Michel Roux et Josiane Zerubia. Télécom ParisTech. 14/12/2007.

9. Mihai Costache : Support Vector Machines et méthodes bayésiennes pour l’apprentissage sé-
mantique fondé sur des catégories : recherche dans les bases de données d’imagerie satellitaire.
Dirigée par Henri Maître et Mihai Datcu. Télécom ParisTech. 12/09/2008

10. Anne-Lise Chesnel : Quantification de dégâts sur le bâti liés aux catastrophes majeures par
images satellite multimodales très haute résolution. Dirigée par Lucien Wald. Mines Paris-
Tech. 15/09/2008.

11. Alexandre Fournier : Détection de cibles par une analyse des perturbations de la texture.
Dirigée par Xavier Descombes et Josiane Zerubia. École Nationale Supérieure de l’Aéro-
nautique et de l’Espace, ISAE, 31/10/2008.

12. Tarek Habib : Mesures de similarités pour la détection de changements abrupts en imagerie
satellitaire multicapteurs. Dirigée par Jocelyn Chanussot et Grégoire Mercier. Institut Na-
tional Polytechnique de Grenoble. 2/12/2008.

13. Marie Lauginie Liénou : Apprentissage automatique des classes d’occupation du sol et représen-
tation en mots visuels des images satellitaires. Dirigée par Henri Maître et Mihai Datcu.
Télécom ParisTech. 2/03/2009.

14. Julien Radoux : Updating land cover maps by GIS-driven analysis of very high resolution
satellite images. Dirigée par Pierre Defourny. Université Catholique de Louvain. 13/01/2010.

15. Aymen El Ghoul : Phase fields for network extraction from images. Dirigée par Ian Jermyn
et Josiane Zerubia. Université de Nice - Sophia Antipolis. 12/09/2010

16. Vincent Poulain : Fusion d’images optique et radar à haute résolution pour la mise à jour de
bases de données cartographiques. Dirigée par Philippe Marthon et Jean-Yves Toureneret.
Institut National Polytechnique de Toulouse. 22/10/2010.

17. Hélène Sportouche : Extraction et reconstruction des bâtiments en milieu urbain à partir
d’images optiques et radar à haute résolution. Dirigée par Florence Tupin. Télécom Paris-
Tech. 10/12/2010
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18. María Carolina Vanegas Orozco : Spatial relations and spatial reasoning for the interpreta-
tion of Earth observation images using a structural model. Dirigée par Isabelle Bloch. Télé-
com ParisTech. 13/01/2011.

12.3 Travail éditorial

– Éditeur associé de IEEE Transactions on Geoscience and Remote Sensing depuis février
2008.

– Relecteur pour IEEE Transactions on Geoscience and Remote Sensing.
– Relecteur pour IEEE Geoscience and Remote Sensing Letters.
– Relecteur pour IEEE Transactions on Image Processing.
– Relecteur pour the International Journal of Remote Sensing.
– Relecteur pour IEE Proceedings - Vision, Image and Signal Processing.
– Relecteur pour IEE Electronics Letters.
– Relecteur pour Remote Sensing of Environment.
– Membre du Technical Program Committee du IEEE International Geoscience and Remote

Sensing Symposium 2003.
– Membre du comité de programme de SPIE Remote Sensing Europe 2010
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On the Possibility of Automatic
Multisensor Image Registration

Jordi Inglada and Alain Giros

Abstract—Multisensor image registration is needed in a large
number of applications of remote sensing imagery. The accuracy
achieved with usual methods (manual control points extraction, es-
timation of an analytical deformation model) is not satisfactory for
many applications where a subpixel accuracy for each pixel of the
image is needed (change detection or image fusion, for instance).
Unfortunately, there are few works in the literature about the fine
registration of multisensor images and even less about the exten-
sion of approaches similar to those based on fine correlation for the
case of monomodal imagery. In this paper, we analyze the problem
of the automatic multisensor image registration and we introduce
similarity measures which can replace the correlation coefficient in
a deformation map estimation scheme. We show an example where
the deformation map between a radar image and an optical one is
fully automatically estimated.

Index Terms—Image registration, multisensor, similarity
measures.

I. INTRODUCTION

THE PROBLEM we want to deal with is the one of the
automatic fine registration of images acquired with dif-

ferent sensors. By different sensors, we mean sensors that pro-
duce images with different radiometric properties, i.e., sensors
which measure different physical magnitudes: optical sensors
operating in different spectral bands, radar and optical sensors,
etc.

For this kind of image pairs, the classical approach of fine
correlation [1], [2], cannot always be used to provide the re-
quired accuracy, since this similarity measure (the correlation
coefficient) can only measure similarities up to an affine trans-
formation of the radiometries.

There are two main questions which can be asked about what
we want to do.

1) Can we define what the similarity is between, for instance,
a radar and an optical image?

2) What does fine registration mean in the case where the
geometric distortions are so big and the source of infor-
mation can be located in different places (e.g., the same
edge can be produced by the edge of the roof of a building
in an optical image and by the wall–ground bounce in a
radar image)?

We can answer by saying that the images of the same object
obtained by different sensors are two different representations
of the same reality. For the same spatial location, we have two
different measures. Both items of information come from the
same source, and thus, they have a lot of common information.

Manuscript received October 6, 2003; revised July 6, 2004.
The authors are with the Centre National d’Études Spatiales, DCT/SI/AP,

F-31401 Toulouse Cedex 9, France (e-mail: jordi.inglada@cnes.fr).
Digital Object Identifier 10.1109/TGRS.2004.835294

This relationship may not be perfect, but it can be evaluated in
a relative way: different geometrical distortions are compared,
and the one leading to the strongest link between the two mea-
sures is kept.

The paper is organized as follows. Section II is a review of
the existing remote sensing image registration literature. In Sec-
tion III, we introduce a theoretical approach to image registra-
tion. The problem of modeling image deformations1 is analyzed
in Section IV. In Section V, we evaluate a set of similarity mea-
sures that can be used for the multisensor image registration
problem, and we use one of them in Section VI in order to es-
timate the deformations between a radar image and an optical
image of the same scene. Finally, in Section VII, we propose
the use of deformation maps for the estimation of topography
using radar and optical acquisitions.

II. REVIEW OF EXISTING WORK

In this section, we will review the works published in the
literature about the automatic multisensor image registration.
The literature about the subject is rather limited in the field
of remote sensing compared to what has been published in the
fields of medical imaging and computer vision. An interesting
survey of image registration techniques can be found in [3]. This
survey poses the problem of image registration using the con-
cepts of similarity measure, geometric transformations, and fea-
ture space. We will take a similar approach in Section III.

The approach taken in most of the works consists in auto-
matically extracting homologous points (HPs) in both images
and using them to estimate a parametric analytical deformation
model.

Ton and Jain [4] were among the pioneers in the research of
automatic algorithms to emulate photointerpreter-based regis-
tration. They proposed an algorithm for HP selection allowing
for the estimation of rotational and translational transformations
on Landsat images. Their approach is similar to the one by Li
et al. [5], who used the salient points of active contours as HPs.
The main problem of this approach is the heavy computation
needed for the implementation of active contours.

Several authors, as for instance Cracknell and Paithoonwat-
tanakij [6], combine an orbital model and a HP search using
correlation and heuristic planning. The idea consists in
searching for couples of HP with a good correlation. The set
of HPs selected is used to solve a least squares estimation of a

1We prefer the term deformation to the classical disparity because the latter
is related to stereo-optical vision. In the case of optical-radar image pairs, the
geometric relative deformations due to topography (depth) do not correspond
to that kind of model. We will use the term deformation as a generalization of
disparity.

0196-2892/04$20.00 © 2004 IEEE
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parametric model. They claim to have subpixel accuracy on the
National Oceanic and Atmospheric Administration’s Advanced
Very High Resolution Radiometer images.

Within the family of methods using automatic correlation,
one can highlight the work of Foroosh et al. [7], where a closed-
form expression for subpixel shift estimation is given. However,
this approach can only be applied to translations. It is also in-
teresting to point out the work of Stone et al. [8] where an algo-
rithm for subpixel shift registration based on Fourier transforms
is presented. This algorithm has the advantage of being very fast
and robust to aliasing.

These approaches are not really multisensor in the sense that
they use a similarity measure which is not. A way to trans-
form these approaches into multisensor ones is by comparing
extracted image primitives. For example, Inglada and Adragna
[9] use a simple edge detection and a genetic algorithm in order
to find the best set HP in the case of a Système Pour l’Obser-
vation de la Terre (SPOT)–European Remote Sensing Satellite
(ERS) registration. The control points of the master image are
randomly taken amongst the extracted edges.

Thépaut et al. [10] do a first geometrical correction using
orbit information, and then a residual translation compensation
using the correlation between the edges extracted from both,
ERS synthetic aperture radar (SAR), and SPOT images. Other
approaches exist for edge matching, as for instance the one of
Wu and Maître [11], where a multiresolution analysis is used
together with a hypothesis testing.

One of the first works on feature-based image registration
was proposed by Ventura et al. [12]. They even applied it to the
problem of image to map registration. The approach was also
finding HP by matching extracted features.

Dai and Khorram [13] use a feature-based approach: they
extract closed edges that are characterized using invariant mo-
ments. Then, the extracted areas are matched using their charac-
terization. Finally, the centers of gravity of each area are used as
HPs for the estimation of an affine transformation. They apply
the approach to Landsat images, and they obtain an accuracy
better than one pixel, which is similar to the accuracy obtained
with manual registration.

Djamdji et al. [14] propose a multiresolution approach, where
the discrete wavelet transform is used. The automatic extraction
of HPs is done by comparing thresholded wavelet coefficients.

All these approaches try to extract HP in order to compute an
analytical deformation model. On the other hand, when working
with images acquired with the same (type of) sensor, one can use
a very effective approach. Since a correlation coefficient mea-
sure is robust and fast for similar images, one can afford to apply
it in every pixel of one image in order to search for the corre-
sponding HP in the other image. One can, thus, build a deforma-
tion grid (a sampling of the deformation map). If the sampling
step of this grid is short enough, the interpolation using an an-
alytical model is not needed, and high-frequency deformations
can be estimated. The obtained grid can be used as a resampling
grid and, thus, obtain the registered images.

No doubt, this approach, combined with image interpolation
techniques (in order to estimate subpixel deformations) and

multiresolution strategies, allows for obtaining the best perfor-
mances in terms of deformation estimation and, hence, for the
automatic image registration.

Unfortunately, in the multisensor case, the correlation coeffi-
cient cannot be used. This will be justified in Section V-B. We
will, thus, try to find similarity measures that can be applied in
the multisensor case with the same approach as the correlation
coefficient.

III. MODEL FOR THE IMAGE REGISTRATION PROBLEM

In this section, we give several definitions that allow for the
formalization of the image registration problem. First of all, we
define the master image and the slave image.

Definition 1 (Master Image): Image to which other images
will be registered. Its geometry is considered as the reference.

Definition 2 (Slave Image): Image to be geometrically trans-
formed in order to be registered to the master image.

Two main concepts are the one of similarity measure and the
one of geometric transformation.

Definition 3: Let and be two images, and let be a sim-
ilarity criterion. We call a similarity measure any scalar strictly
positive function

(1)

has an absolute maximum when the two images and
are identical in the sense of criterion .

Definition 4: A geometric transformation is an operator
that, applied to the coordinates of a point in the slave
image, gives the coordinates of its HP in the master image

(2)

Finally, we introduce a definition for the image registration
problem.

Definition 5 (Registraton Problem):

1) Determine a geometric transformation that maximizes
the similarity between a master image and the result of
the transformation

Arg (3)

2) Resampling of by applying .
We must note that Le Moigne et al. have proposed in a re-

cent contribution [15] a modular approach for registration that
allows the analysis of different similarity measures and different
optimization strategies. The presented results, which are still
preliminary, are very promising. The multisensor case has been
dealt with, but only for optical images (Ikonos and Landsat En-
hanced Thematic Mapper Plus). The case of very different im-
ages (e.g., optical and radar) has not been explored.

IV. GEOMETRIC DEFORMATION MODELING

The geometric transformation of Definition 4 is used for the
correction of the existing deformation between the two images
to be registered. This deformation contains information, which
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TABLE I
CHARACTERIZATION OF THE GEOMETRIC DEFORMATION SOURCES

is linked to the observed scene and the acquisition conditions.
The deformations can be classified into the following three
classes, depending on their physical source:

1) deformations linked to the mean attitude of the sensor (in-
cidence angle, presence or absence of yaw steering, etc.);

2) deformations linked to a stereo vision (mainly due to the
topography);

3) deformations linked to attitude evolution during the ac-
quisition (vibrations that are mainly present in pushbroom
sensors).

These deformations are characterized by their spatial fre-
quencies and intensities, which are summarized in Table I.

Depending on the type of deformation to be corrected, its
model will be different. For example, if the only deformation
to be corrected is the one introduced by the mean attitude, a
physical model for the acquisition geometry (independent of
the image contents) will be enough. If the sensor is not well
known, this deformation can be approximated by a simple an-
alytical model. When the deformations to be modeled are high
frequency, analytical (parametric) models are not suitable for
a fine registration. In this case, one has to use a fine sampling
of the deformation, which means the use of deformation grids.
These grids give, for a set of pixels of the master image, their
location in the slave image.

The following points summarize the problem of the deforma-
tion modeling.

1) An analytical model is just an approximation of the defor-
mation. It is often obtained as follows:
a) directly from a physical model without using any

image content information;
b) by estimation of the parameters of an a priori model

(polynomial, affine, etc.). These parameters can be
estimated
i) either by solving the equations obtained by

taking HP. The HP can be manually or automat-
ically extracted;

ii) or by maximization of a global similarity
measure.

2) A deformation grid is a sampling of the deformation map.

The last point implies that the sampling period of the grid
must be short enough in order to account for high-frequency de-
formations (Shannon theorem). Of course, if the deformations
are nonstationary (it is usually the case of topographic deforma-
tions), the sampling can be irregular.

As a conclusion, we can say that Definition 5 poses the regis-
tration problem as an optimization problem. This optimization
can be either global or local with a similarity measure, which can
also be either local or global. All this is synthesized in Table II.

TABLE II
APPROACHES TO IMAGE REGISTRATION

The ideal approach would consist in a registration that is lo-
cally optimized, both in similarity and deformation, in order to
have the best registration quality. This is the case when deforma-
tion grids with dense sampling are used. Unfortunately, this case
is the most computationally heavy, and one often uses either a
low sampling rate of the grid or the evaluation of the similarity in
a small set of pixels for the estimation of an analytical model.2

Both of these choices lead to local registration errors, which,
depending on the topography, can amount to several pixels.

Even if this registration accuracy can be enough in many ap-
plications, (orthoregistration, import into a geographic informa-
tion system, etc.), it is not acceptable in the case of data fusion,
multichannel segmentation, or change detection [16]. This is
why we will focus on the problem of deformation estimation
using dense grids.

None of the references presented in Section II uses the local
optimization approach. We can also note that in the multisensor
case only few authors [15] have used any similarity measure
other than the correlation coefficient. However, in the medical
imaging field, as we will see in Section V, a lot of similarity
measures have been proposed as a generalization of the correla-
tion coefficient. These measures enable the registration of very
different imagery modalities. Nevertheless, these works are not
directly usable in our problem, since the geometric deformations
present in medical images can be easily represented by global
analytical models. Indeed, often a rigid model (rotation, trans-
lation, scale) or slightly elastic (affine plus a term) is
enough, since: 1) the sensors are stable; 2) the stereo effect is
small; 3) and only the point of view changes. As we have noted
above, deformations due to topography can locally have high
frequencies for medium- and high-resolution sensors (30 m and
better), thus our need for a fine modeling. We also point out that
the problem of hidden faces is beyond the scope of this paper.

V. SIMILARITY MEASURES

The fine modeling of the geometric deformation we are
looking for needs for the estimation of the coordinates of
nearly every pixel in the master image inside the slave image.
In the classical monosensor case where we use the correlation
coefficient, we proceed as follows.

2However, computation time is not nowadays a real issue. As an illustration,
we can give the example of the PAN+XS fusion procedure developed at the
Centre National d’Études Spatiales (CNES) for the SPOT 5 ground segment
where the subpixel registration between the Panchromatic band and the multi-
spectral channels is done on 24 000� 24 000 images in less than 1 h on a Sun
Sparc Ultra-4 workstation.
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Fig. 1. Estimation of the correlation surface.

The geometric deformation is modeled by local rigid dis-
placements. One wants to estimate the coordinates of each pixel
of the master image inside the slave image. This can be repre-
sented by a displacement vector associated to every pixel of the
master image. Each of the two components (lines and columns)
of this vector field will be called deformation grid.

We use a small window taken in the master image, and we
test the similarity for every possible shift within an exploration
area inside the slave image (Fig. 1).

That means that, for each position, we compute the correla-
tion coefficient. The result is a correlation surface whose max-
imum gives the most likely local shift between both images

(4)

In this expression, is the number of pixels of the analysis
window; and are the estimated mean values inside the
analysis window of, respectively, image and image ; and
and are their standard deviations.

Quality criteria can be applied to the estimated maximum in
order to give a confidence factor to the estimated shift: width of
the peak, maximum value, etc. Subpixel shifts can be measured
by applying fractional shifts to the sliding window. This can be
done by image interpolation.

The interesting parameters of the procedure are the following.

• The size of the exploration area: it determines the com-
putational load of the algorithm (we want to reduce it),
but it has to be large enough in order to cope with large
deformations.

• The size of the sliding window: the robustness of the cor-
relation coefficient estimation increases with the window
size, but the hypothesis of local rigid shifts may not be
valid for large windows.

The correlation coefficient cannot be used with original
gray-level images in the multisensor case. It could be used on
extracted features (edges, etc.), but the feature extraction can
introduce localization errors. Also, when the images come from
sensors using very different modalities, it can be difficult to find
similar features in both images. In this case, one can try to find
the similarity at the pixel level, but with other similarity mea-
sures and apply the same approach as we have just described.

Fig. 2. Measure of �(�x) for three different pairs of images.

The concept of similarity measure has been presented in Def-
inition 3. The difficulty of the procedure lies in finding the func-
tion , which properly represents the criterion . We also need
that be easily and robustly estimated with small windows. We
extend here what we proposed in [17].

A. Correlation Coefficient

We remind here the computation of the correlation coefficient
between two image windows and . The coordinates of the
pixels inside the windows are represented by

(5)

In order to qualitatively characterize the different similarity
measures we propose the following experiment. We take two
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(a) SPOT 5 B1

(b) Joint Histogram

Fig. 3. Joint histogram of an image with itself.

images that are perfectly registered, and we extract a small
window of size from each of the images (this size is
set to 101 101 for this experiment). For the master image, the
window will be centered on coordinates (the center
of the image), and for the slave image, it will be centered on
coordinates . With different values of (from

10 pixels to 10 pixels in our experiments), we obtain an
estimate of as a function of , which we write as

for short. The obtained curve should have a maximum
for , since the images are perfectly registered. We
would also like to have an absolute maximum with a high value
and with a sharp peak, in order to have a good precision for the
shift estimate.

In the following, we will make this experiment with different
image pairs and different similarity measures. Fig. 2 shows the
results obtained when the correlation coefficient is applied to
[Fig. 2(a)] one extract of the B1 channel of a SPOT 5 image
with itself, [Fig. 2(b)] an extract of channel B1 with the extract
of channel B3, and [Fig. 2(c)] the extract of channel B1 with an
extract of an ERS-2 SAR image. The images are presented in
Figs. 3–5.

We can see that the correlation coefficient has a good behavior
for the first pair, but its performances are bad when the im-
ages radiometries are different. The correlation coefficient can
be characterized as follows:

• well-known algorithm;
• fits the registration needs when using radiometrically sim-

ilar images;
• simple and fast computation;
• high precision in the estimation of the deformation;
• robust to noise.

(a) SPOT 5 B1

(b) SPOT 5 B3

(c) Joint Histogram

Fig. 4. Joint histogram of two channels (B1-B3) of the same SPOT 5 image.

However, its main disadvantage is that it can only take into
account affine transformations between radiometries (

), so it cannot be used in the general multisensor case.

B. Generalization: Probabilistic Interpretation

The correlation coefficient formulation [see (5)] can be revis-
ited with a probabilistic interpretation

(6)

where the sum is taken over the list of radiometry pairs ,
and is the value of the joint normalized histogram (estima-
tion of the joint probability density function (pdf) ) of
the pair of images.
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(a) SPOT 5 B3

(b) ERS-2

(c) Joint Histogram

Fig. 5. Joint histogram of a SPOT 5 B3 image and a ERS-2 image.

That means that we are assuming a linear model

(7)

and we evaluate its likelihood by weighting with the probability
of each radiometry couple .

One could assume different models for the radiometry pairs
leading to different measures as, for instance, the identity model

, which leads to the norm

(8)

or more complex models based on textural approaches, as
follows:

Diagonal moment:

MD (9)

Fig. 6. Image shift experiment: Woods criterion.

Cluster Shade:

(10)

Cluster Prominence:

(11)

An assessment of these measures for image registration can
be found in [18]. They are very sensitive to noise and are not
useful for the comparison of gray levels of multisensor image
pairs.
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Fig. 7. Image shift experiment: Correlation ratio.

C. Estimation of Similarity Measures and

In the expression of the correlation coefficient the term is
an estimation of the joint pdf of the radiometries of the images
we are comparing. It can be seen as a link (transfer function)
between both radiometries.

We show here several examples of the estimation of the
joint histogram. In Figs. 3–5 are shown, respectively, the joint
histograms of one image with itself (B1-B1), two different
channels of the same SPOT 5 image (B1-B3), and a SPOT 5
B3–ERS-2 pair.

As expected, the joint histogram of an image with itself is a
straight line with slope 1. It shows the full correlation between
the two images: the identity transfer function. This kind of situ-
ation is well dealt with by the correlation coefficient.

Fig. 8. Image shift experiment: Distance to independence.

TABLE III
EXPRESSIONS OF FUNCTION f IN THE f -DIVERGENCE FAMILY

The B1-B3 case (Fig. 4) shows two nearly linear tendencies
that are mixed up. This case cannot be dealt with by the corre-
lation coefficient.
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Fig. 9. Image shift experiment: Kolmogorov distance.

Finally, Fig. 5 shows the impossibility of finding any corre-
lation link between two sensors, which are as different as an
optical and a radar one.

1) Computation Time: The main difference between the two
expressions of the correlation coefficient given by (5) and (6)
is the estimation of the joint pdf needed in the second expres-
sion. This estimation is usually done by computing the joint
histogram. The joint histogram can be computed with different
methods, but their discussion is beyond the scope of this paper.
However, it is important to note that the method chosen for his-
togram computation may induce significant changes in the com-
putation cost of the similarity measure. As an example, with our
implementation (counting with optimization of the number of
classes), there is an increase factor of 4 in computation time be-
tween (5) and (6).

The multisensor measures that will be introduced in the next
section need the estimation of the joint histogram. Hence, their
computation time is comparable to the one of (6). The differ-
ences of computation complexity between these measures are
negligible, since the longest part of the algorithm is taken by
the joint histogram estimation.

D. Multisensor Measures

We introduce here several similarity measures that have been
proved useful in the problem of multimodality medical image
registration [19].

In the following, the sums will be computed over radiometry
values. We will use the conditional mean

(12)

and the conditional variance

(13)

For each of the following measures, we will perform the ex-
periment described in Section V-A.

1) Measures Using the Radiometry Values and the Probabil-
ities: Within this class, we will not take into account the mea-
sures that are based on the differences of radiometries ( norm
of the difference) [20]–[22] or textural measures, since they give
low-quality results.

a) Normalized sandard deviation or Woods crite-
rion: The work by Woods et al. first on monomodal reg-
istration [23] and then on multimodal registration [24] lead to
the elaboration of this similarity measure. Given the intensity
on one image, i.e., the set of pixels having this value, this
measure takes into account the variability of the intensities
of the homologous pixels in the other image. The underlying
hypothesis is that this variability (which is actually a measure
of variance) will be minimum when the images are registered

Woods (14)

In order to have a criterion which has to be maximized, we
will use

(15)

The results on our three test image pairs are shown in Fig. 6.
We see that for the monosensor case, the results are similar to
those of the correlation coefficient. For the two multisensor ex-
amples, we obtain high values near the zero-shift, but the loca-
tion of these maxima is not accurate.

b) Correlation ratio: This is a very well known measure
in statistics. It has been first proposed in the framework of image
registration by Roche et al. [25]. It is defined as follows:

(16)
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Fig. 10. Image shift experiment: Mutual information.

Its interpretation is similar to the one of the Woods criterion.
The results are shown in Fig. 7, and they are worse than those
of the Woods criterion.

2) Measures Using Only the Probabilities: This class of
measures does not directly use the radiometries of the pixels,
but only the estimation of the joint pdf. Of course, the pixel
pairs are used for the estimation of this probability.

a) Distance to independence: It is a normalized version
of the test

(17)

It measures the degree of statistical dependence between both
images, since for two independent random variables, the joint

Fig. 11. Image shift experiment: CRA.

pdf is equal to the product of the marginals. The correlation
coefficient is a test of independence of order 2, and this one is the
generalization to any order. The results are shown in Fig. 8. In
this case, for the three pairs, we obtain an absolute maximum for
the zero-shift case, which is sharp enough for a robust automatic
detection.

b) -divergence family: An -divergence [26] measures
the expectation of the diversity of the likelihood ratio between
two distributions and

(18)

is the expectation with respect to ; is the
derivative with respect to a density; and is continuous and
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TABLE IV
DEFORMATION GRID ESTIMATION MEAN SQUARE ERROR

(a) SPOT 4 B3 (b) ERS-2 SAR (c) DEM

Fig. 12. Images and DEM for the test area.

(a) Columns (b) Lines

Fig. 13. Deformation grid. CRA, estimation window is 51� 51 pixels, and the sampling rate is ten pixels.

convex on . A divergence can be seen as a relative en-
tropy. In order to simplify the notation, we will use ,

, and .
Depending on the choice of (see Table III), we can obtain

several interesting cases, as follows.

1) Kolmogorov distance:

(19)

2) Kullback information or mutual information:

(20)

3) Kullback divergence:

(21)
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(a) Columns (b) Lines

Fig. 14. Deformation grid. CRA, estimation window is 81� 81 pixels, and the sampling rate is ten pixels.

4) -divergence:

(22)

5) Hellinger distance:

(23)

6) Toussaints distance:

(24)

7) Lin -divergence:

(25)

All these measures give very similar results [27]. We study
two of them.

1) Kolmogorov distance:

(26)

It can be seen as a norm version of the criterion.
The results are shown in Fig. 9.

2) Mutual information:

(27)

The results are shown in Fig. 10.
Both measures give satisfactory results, which are very sim-

ilar to the ones obtained with the distance to the independence.

c) Cluster reward algorithm: Let be the joint
histogram of the pair of images, and let and , re-
spectively, be the marginal histograms and the number of
pixels. We define

(28)

where

(29a)

(29b)

(29c)

(29d)

The index will have a high value when the joint his-
togram has little dispersion. This lack of dispersion can be due
to a correlation (histogram distributed along a line) or to the
clustering of radiometry values within the histogram. In both
cases, one can predict the values of one image from the values
of the other.

In order to compare with the -divergences, we can
rewrite (28) as

(30)

If we consider the denominator as a normalization term, we can
focus only in the numerator. This numerator contains the same
terms as the -divergences, i.e., a term that depends on the joint
pdf and a term that depends on the product of the marginals.
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Fig. 15. Region of interest and test points for the validation.

TABLE V
RESULTS OF THE FIRST VALIDATION METHOD. SEE TEXT AND

FIGS. 15–20 FOR THE DETAILS

We can, thus, make an interpretation that is similar to the inde-
pendence tests. As expected, the obtained results (Fig. 11) are
similar to those obtained with the -divergences.

The main interest of the CRA with respect to the -divergence
family is that the joint histogram noise due to estimation has less
influence in the similarity measure. This allows us to use smaller
estimation windows. The only drawback in doing this is that the
peak of the measure will be less sharp.

E. Characterization of Similarity Measures

Similarity measures can be characterized using the following
criteria:

• the geometric resolution: maximum frequency of the
deformations;

• ability to deal with images acquired from different sensors.
The first point is directly linked to the number of pixels

needed to obtain a good estimate of the measure. Indeed,
since when estimating deformation grids we assume that the
deformation can be decomposed on local shifts, that means that
there should be no deformation inside the estimation window.
However, if we need large windows for the estimation, the
likelihood for our assumption to be true can be very low.

In order to illustrate this problem, we have made the following
experiment. We have taken the pair B1-B3 of a SPOT 5 image,
and we have applied a sinusoidal deformation, with period
pixels to the slave (B3) image in the horizontal direction. We

have made the estimation of the deformation using the mutual
information, and we have computed the mean square error be-
tween the estimated and the real deformation grids

where is the real sinusoidal deformation, and
is the estimated deformation grid. The experiment has been
made for different values of the period and the estimation
window size. The results, which are measured in square pixels,
are shown in Table IV. We observe the following.

• For medium to long periods, the quality of the estimation
increases with the window size.

• For short periods ( and ), the increase of
the window size produces a decrease of the performances.
This is due to the fact that geometrical deformations are
strong inside the estimation window.

F. Behavior in Presence of Noise

One could also analyze how the different similarity measures
behave when noise is present in the data. The presence of addi-
tive noise in the data produces a dispersion of the joint histogram
of the images. For the -divergence family, since the estima-
tion windows used in the experiments contain a high number
of samples, noisy data does not cause noisy estimations of the
similarity, but rather wider similarity peaks. However, the lo-
cation of the similarity optimum is not affected by noise. This
behavior is confirmed by the SPOT-ERS couple, since the radar
image contains a strong multiplicative noise.

VI. GRID ESTIMATION: A REAL CASE

The similarity measures introduced in the previous sections
have been tested in a simple framework of integer shifts in one
dimension and with low frequency (Table IV). In order to further
test the performances of these methods, we will apply them in
the same way as we would do using the correlation coefficient,
i.e., estimating a deformation grid between a radar and an optical
image.

Our dataset consists in the following pair (a region of a size
of 2000 2000 pixels is used for our tests):

• the B3 channel of a SPOT 4 image (20-m pixel resolution)
acquired on June 24, 2001 over the East of the Bucharest
area [Fig. 12(a)];

• a ERS-2 SAR three-looks intensity image (12.5-m pixel
size and approximately 20-m pixel resolution) acquired on
May 10, 2001 over the same area [Fig. 12(b)].

Both images were orthorectified: for the SPOT 4 image, a
digital elevation model (DEM) [Fig. 12(c)] with an altimetric
precision better than 10 m and a planimetric precision around
10 m has been used, together with the acquisition model (orbits,
attitude) for the satellite; for the ERS-2 image, no DEM was
used, but a constant altitude and homologous points manually
taken on the SPOT 4 image were used in the orthorectification
process. Globally, the images show a good superposition, but
local errors exist, which can amount to several pixels due to
the simple geometric modeling of the deformation of the radar
image. We have discussed these problems in Section IV.
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(a) Point A in the master image (b) Point A in the slave image

Fig. 16. Location of point A for a null displacement (+) and for the measured displacement (�).

(a) Point B in the master image (b) Point B in the slave image

Fig. 17. Location of point B for a null displacement (+) and for the measured displacement (�).

If we analyze the DEM, we see that a gentle slope descending
from northwest to southeast exists and that abrupt topography
features appear in the northeast and the southwest. The shape of
the river can also be identified in the DEM.

We will estimate the residual deformation between the two
images with the cluster reward algorithm (CRA). We will
estimate the local shifts (lines and columns) every ten pixels,
thus building the deformation grids. Using noninteger shifts
for the estimation window, we can estimate the deformation
with subpixel accuracy. The noninteger shifts are applied by
interpolating the slave image using a sinc function weighted
by a Gaussian function whose variance is chosen so as to keep
90% of the energy in a filter with a length of 13 samples.

First of all, we will use an estimation window of size 51 51
pixels and an exploration area of pixels around each pixel.
The map of the measured deformations is shown in Fig. 13.

Applying quality criteria to the peak of the measure (value and
shape), we find that 70% of the measured points are considered
as valid and that 24% of the remaining pixels are not valid be-
cause the peak is in the limit of the exploration area.

Analyzing these grids we can draw the following conclusions.

• The grids are noisy. This is due to the size of the estimation
window.

• The main deformations are measured in the column direc-
tions, i.e., the direction for which there is an stereoscopic
effect between the two acquisitions (ERS-2 and SPOT 4
have polar orbits).

• The measured deformations are strongly correlated to
the topography, mainly near the river area and at the two
abrupt changes in the northeast and the southwest areas.
This shows the limitations of the analytical models for
the topographic deformations.
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(a) Point C in the master image (b) Point C in the slave image

Fig. 18. Location of point C for a null displacement (+) and for the measured displacement (�).

(a) Point D in the master image (b) Point D in the slave image

Fig. 19. Location of point D for a null displacement (+) and for the measured displacement (�).

• Low-frequency gradients of small amplitude appear on
both grids. This may be due to a bad choice of the degree
of the polynomial modeling.

In order to validate the assumption that links the estimation
window size to the noisy aspect of the grid, we perform a new
test with a window size of 81 81 pixels. We also increase the
exploration area to pixels in order to increase the number
of valid points. We obtain the following results: 78% of valid
points; 21% of the points have the peak in the limit of the ex-
ploration area. The deformation grids are shown in Fig. 14. We
observe a decrease of the noise.

A. Validation of the Results

In order to validate the displacements obtained in the defor-
mation grids, we have used three different approaches.

1) We select a set of points in the master (SPOT 4) image,
and we manually find the HP in the slave (ERS-2) image
and compare the obtained displacements with the ones
measured in the grids. This method compares the result
of the automatic processing with a manual HP selection.

2) For the same set of points of the master image, we point
out the two points in the slave image: the point with the
same coordinates (zero-shift) and the point that results
in applying the shift measured in the grid. This method
shows the relative improvement in registration with re-
spect to the original image pair.

3) We resample the slave image using the measured grids
and visually check the quality of the registration before
and after resampling.

The set of test points for the first and second validation
methods are shown in Fig. 15. The results of method 1 are
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(a) Point E in the master image (b) Point E in the slave image

Fig. 20. Location of point E for a null displacement (+) and for the measured displacement (�).

(a) Before registration (b) After registration

Fig. 21. Checkerboard visualization of the registration.

shown in Table V where, for each test point, we give the
following:

• its coordinates (line and column) in both (ERS and SPOT)
images as obtained by manual point selection;

• the deformation as a result of the difference of coordinates
above;

• the deformation computed by the automatic algorithm;
• and the deformation error, i.e., the difference between

manual and automatic approaches.
We see that the automatic processing yields results that are

very close to manual operation. Indeed, the Euclidean distance
between manual and computed deformations is always less than
0.65 pixels. One has to bear in mind that the manual measure is
not perfect, so this can be considered a very good result.

The results of the second method are shown on Figs. 16–20.
One can see that for every point, the measured displacement
gives a better relative position of the studied point than the null
displacement.

Fig. 21 shows the results of the third validation method. One
can see that the resampling of the radar image using the esti-
mated deformation grids [Fig. 21(b)] leads to a better registra-
tion of the images [Fig. 21(a)].

VII. DEM ESTIMATION

Besides the image registration approach, the results of the
previous section allow for the estimation of topography using an
optical-radar image pair. In this section, we show how this could
be done using a single satellite. This procedure is given here as
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Fig. 22. DEM estimation from a single platform.

Fig. 23. Factor sin 2�=2 for � in degrees.

an illustration and should not be considered as a substitution of
parametric sensor models when they are available.

Fig. 22 shows a geometric model for the problem. Both sen-
sors (optical and radar) are onboard of the same satellite at point

whose vertical projection to the ground is point , and is
the height of the orbit. Both image acquisitions are simultaneous
and the incidence angle is . We want to measure the height
of point . We can locally make the assumption of flat earth.

In the optical image, the point is actually seen at point
, while it is projected into point in the radar image, if

we assume a flat wavefront. If we call the
measured shift of the point between both images, we obtain

(31)

That means that the height of the point is proportional to the
measured shift. It is interesting to note that it does not depend
neither on any baseline between the two instruments nor on their
altitude. Fig. 23 shows the dependency of the proportionality
factor with the incidence angle. Typically, for optical sensors

and for radar acquisitions, . That means that
the proportionality factor will be between 0.3–0.45.

In the case where the acquisitons are made with different inci-
dence angles and (different platforms, for example), (31)
becomes

(32)

VIII. CONCLUSION

We have formalized the problem of remote sensing image
registration. We also have described which are the limitations of

the correlation coefficient in the multisensor case, and we have
shown how other similarity measures can be used to extend the
correlation coefficient approach to the multisensor problem.

These measures have been widely used in the medical
imaging field, but they have always been used together with
analytical models and global similarity research. We have
shown that these approaches are not enough in the case of
remote sensing.

A simple case study with an optical-radar pair has allowed
us to show that it is possible to automatically measure high-fre-
quency deformations between multisensor images by using a
local similarity estimation leading to the estimate of deforma-
tion grids of subpixel accuracy. This result opens the possi-
bility of automatic optical-radar DEM estimation from a single
satellite.
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Analysis of Artifacts in Subpixel
Remote Sensing Image Registration

Jordi Inglada, Vincent Muron, Damien Pichard, and Thomas Feuvrier

Abstract—Subpixel accuracy image registration is needed for
applications such as digital elevation model extraction, change
detection, pan-sharpening, and data fusion. In order to achieve
this accuracy, the deformation between the two images to be
registered is usually modeled by a displacement vector field which
can be estimated by measuring rigid local shifts for each pixel in
the image. In order to measure subpixel shifts, one uses image
resampling. Sampling theory says that, if a continuous signal has
been sampled according to the Nyquist criterion, a perfect con-
tinuous reconstruction can be obtained from the sampled version.
Therefore, a shifted version of a sampled signal can be obtained
by interpolation and resampling with a shifted origin. Since only a
sampled version of the shifted signal is needed, the reconstruction
needs only to be performed for the new positions of the samples,
so the whole procedure comes to computing the value of the signal
for the new sample positions. In the case of image registration,
the similarity between the reference image and the shifted ver-
sions of the image to be registered is measured, assuming that
the maximum of similarity determines the most likely shift. The
image interpolation step is thus performed a high number of times
during the similarity optimization procedure. In order to reduce
the computation cost, approximate interpolations are performed.
Approximate interpolators will introduce errors in the resampled
image which may induce errors in the similarity measure and
therefore produce errors in the estimated shifts. In this paper, it is
shown that the interpolation has a smoothing effect which depends
of the applied shift. This means that, in the case of noisy images,
the interpolation has a denoising effect, and therefore, it increases
the quality of the similarity estimation. Since this blurring is
not the same for every shift, the similarity may be low for a null
shift (no blurring) and higher for shifts close to half a pixel (strong
blurring). This paper presents an analysis of the behavior of the
different interpolators and their effects on the similarity measures.
This analysis will be done for the two similarity measures: the cor-
relation coefficient and the mutual information. Finally, a strategy
to attenuate the interpolation artifacts is proposed.

Index Terms—Disparity map estimation, image registration,
interpolation artifacts, similarity measures.

I. INTRODUCTION

SUBPIXEL accuracy image registration is needed for ap-
plications such as change detection [1], pan-sharpening

[2], and data fusion [3]. In order to achieve this accuracy, the
deformation between the two images to be registered is usually
modeled by a displacement vector field which can be estimated
by measuring rigid local shifts for each pixel in the image.
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In order to measure subpixel shifts, image resampling is
used. Sampling theory says that, if a continuous signal has
been sampled according to the Nyquist criterion, a perfect
continuous reconstruction can be obtained from the sampled
version. Therefore, a shifted version of a sampled signal can be
obtained by interpolation and resampling with a shifted origin.

Since only a sampled version of the shifted signal is needed,
the reconstruction needs only to be performed for the new
positions of the samples, so the whole procedure comes to
computing the value of the signal for the new sample positions.

In the case of image registration, the similarity between the
reference image and the shifted versions of the image to be reg-
istered is measured, assuming that the maximum of similarity
determines the most likely shift. The image interpolation step
is thus performed a high number of times during the similarity
optimization procedure. In order to reduce the computation
cost, approximate interpolations are performed. Indeed, the
ideal interpolator is a sinus cardinal function, and therefore,
an infinite number of samples are needed for the computation
of any new sample. Several approaches exist for reducing the
computation time. For instance, a truncated sinc interpolator
needs only a few samples. Other interpolators like the linear
one can also be used.

Approximate interpolators will introduce errors in the resam-
pled image which may induce errors in the similarity measure
and therefore produce errors in the estimated shifts.

The problem of interpolation artifacts in image registra-
tion has been studied in the case of mutual-information-based
registration in the context of medical images [5]–[7]. To our
knowledge, there is no equivalent work in the field of remote
sensing image registration. In this case, simple parametric
geometrical transformations are not good candidates for defor-
mation modeling. Also, similarity measures other than mutual
information should be studied and characterized with respect to
the interpolation artifacts.

Finally, the explanations given in the literature for the ar-
tifacts observed in registration functions do not seem to be
satisfactory for all similarity measures and image modalities.
Therefore, a theoretical modeling of the artifacts is proposed
here. In this paper, we focus on the characterization of the
artifacts for different similarity measures and interpolators,
and we propose a theoretical explanation of the origin of the
artifacts. Some guidelines and recommendations in order to
attenuate these artifacts are also given.

The paper is organized as follows. In Section II, we pose the
problem of subpixel image registration. In Section III, we show
the effects of the artifacts on disparity maps with empirical
tests. Section IV gives a theoretical explanation for the origin
of the artifacts and checks its validity on test data. Section V

0196-2892/$25.00 © 2007 IEEE
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TABLE I
APPROACHES TO IMAGE REGISTRATION

proposes strategies to attenuate the effects of the artifacts; and
Section VI concludes the paper.

II. DISPARITY-MAP ESTIMATION

In this section, we recall the principle of disparity-map
estimation used in order to achieve subpixel accuracy.

A. Problem Position

The problem of disparity-map estimation has been described
in detail in [8]. We recall hereafter the main concepts involved
with it.

The estimation of a disparity map between a reference im-
age I and secondary image J can be posed as the following
optimization problem:

Arg max
T

(Sc(I, T ◦ J)) (1)

where T is a geometric transformation and Sc is a similarity
measure: a scalar strictly positive function which has an ab-
solute maximum when the two images I and J are identical in
the sense of the criterion c.

In the case of image registration, the inverse of transforma-
tion T is needed for image resampling.

Depending on the type of deformation to be corrected, the
model used for T will be different. For example, if the only
deformation to be corrected is the one introduced by the mean
attitude, a physical model for the acquisition geometry (inde-
pendent of the image contents) will be enough. If the sensor
is not well known, this deformation can be approximated by a
simple analytical model. When the deformations to be modeled
have high frequencies, analytical (parametric) models are not
suitable for a fine registration. In this case, one has to use a fine
sampling of the deformation, that means the use of deformation
grids. These grids give, for a set of pixels of the reference
image, their location in the secondary image.

We can thus conclude that the optimization of the similarity
can be either global or local with a similarity measure, which
can also be either local or global. All this is synthesized in
Table I.

The ideal approach would consist of a registration which is
locally optimized, both in similarity and deformation, in order
to have the best registration quality. This is the case when defor-
mation grids with dense sampling are used. Unfortunately, this
case is the most computationally expensive, and one often uses
either a low sampling rate of the grid or the evaluation of the

Fig. 1. Estimation of the similarity surface.

TABLE II
EXPRESSIONS OF FUNCTION f IN THE f -DIVERGENCE FAMILY

similarity in a small set of pixels for the estimation of an analyt-
ical model. Both of these choices lead to local registration errors
which, depending on the topography, can amount several pixels.

Even if this registration accuracy can be enough in many
applications (orthoregistration, import into a GIS, etc.), it may
not be acceptable in the case of data fusion, multichannel
segmentation, or change detection [1]. This is why we will
focus on the problem of deformation estimation using dense
grids.

As we have noted above, deformations due to topography can
locally have high frequencies for medium- and high-resolution
sensors (30 m and better), thus our need for fine modeling.

B. Estimation Procedure

The geometric deformation is modeled by local rigid dis-
placements [8]. One wants to estimate the coordinates of each
pixel of the reference image inside the secondary image. This
can be represented by a displacement vector associated with
every pixel of the reference image. Each of the two components
(lines and columns) of this vector field will be called deforma-
tion grid.

We use a small window taken in the reference image, and we
test the similarity for every possible shift within an exploration
area inside the secondary image (Fig. 1). That means that, for
each position, we compute the similarity measure. The result is
a similarity surface whose maximum gives the most likely local
shift between both images.

Quality criteria can be applied to the estimated maximum in
order to give a confidence factor to the estimated shift: width of
the peak, maximum value, etc. Subpixel shifts can be measured
by applying fractional shifts to the sliding window. This is done
by image interpolation.
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Fig. 2. Images and DEM for the test area. (a) Spot 4 B3. (b) ERS-2 SAR. (c) DEM.

The interesting parameters of the procedure are the
following.

1) The size of the exploration area: it determines the compu-
tational load of the algorithm (we want to reduce it), but
it has to be large enough in order to cope up with large
deformations.

2) The size of the sliding window: the robustness of the
similarity measure estimation increases with the window
size, but the hypothesis of local rigid shifts may not be
valid for large windows.

C. Similarity Measures

In this paper, we will only study two similarity measures: the
correlation coefficient and the mutual information. A detailed
discussion on similarity measures for image registration can be
found in [8].

The correlation coefficient is the most used similarity mea-
sure for image registration. We remind here its computation
for two image windows I and J . The coordinates of the pixels
inside the windows are represented by (x, y)

ρ(I, J) =
1

N

∑
x,y(I(x, y) − mI)(J(x, y) − mJ)

σIσJ
. (2)

In this expression, N is the number of pixels of the analysis
window, mI and mJ are the estimated mean values inside the
analysis window of, respectively, images I and J , and σI and
σJ are their standard deviations.

The mutual-information measure between two images can
be understood as the amount of information we have from
one image when we know the other. This is the degree of
dependence between the two images. Several approaches exist
for the computation of the mutual information. We prefer to
introduce it as a member of the f -divergence family.

An f -divergence [9] measures the expectation of the diver-
sity of the likelihood ratio between two distributions P and Q

Df (P,Q)=EQ

[
f

(
dp(x)

dq(x)

)]
=

∫
f

(
p(x)

q(x)

)
q(x)dx. (3)

EQ is the expectation with respect to Q, dp(x)/dq(x) is the
derivative with respect to a density, and f is continuous and
convex on [0,+∞). A divergence can be seen as a relative
entropy. Depending on the choice of f , different measures can
be obtained. Table II shows some interesting cases.

The mutual information between images I and J is the par-
ticular case where f(x) = x log x, p(x) = pIJ (i, j) (the joint
probability density function of the two images) and q(x) =
pI(i)pJ (j) (the product of probability density functions of
images I and J). It can therefore be computed as follows:

MI(I, J) =
∑

ij

pIJ (i, j) log
pIJ(i, j)

pI(i)pJ (j)
. (4)

The sum is computed over every couple of pixel values (i, j).

III. ASSESSMENT OF THE ARTIFACTS

In this section, we introduce the problem of subpixel shift
artifacts by analyzing the results obtained in a real case.

Our data set is consist of the following pair (a region of
2000 × 2000 pixels is used for our tests):

1) B3 channel of a SPOT 4 image (20-m pixel resolution)
acquired on June 24, 2001, over the east of the Bucharest
area [Fig. 2(a)];

2) European Remonte Sensing 2 (ERS-2) Satellite synthetic
aperture radar three-look intensity image (12.5-m pixel
size and approximately 20-m pixel resolution) acquired
on May 10, 2001, over the same area [Fig. 2(b)].

Both images were orthorectified: For the SPOT 4 image, a
digital elevation model (DEM) [Fig. 2(c)] with an altimetric
accuracy better than 10 m and a planimetric accuracy around
10 m has been used together with the acquisition model (orbits,
attitude) for the satellite; for the ERS-2 image, no DEM was
used, but a constant altitude and homologous points manually
taken on the SPOT 4 image were used in the orthorectification
process. Globally, the images show a good superposition, but
local errors exist, which can amount several pixels due to the
simple geometric modeling of the deformation of the radar
image.

If we analyze the DEM, we see that a gentle slope descending
from northwest and southeast exists and that abrupt topography
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Fig. 3. Deformation grid. Mutual information: estimation window is 51 × 51 pixels, and sampling rate is five pixels. (a) Horizontal. (b) Vertical.

Fig. 4. Histograms of the estimated subpixel shifts [(a) horizontal and (b) vertical] with inversion of the reference and the secondary images.

features appear in the northeast and southwest. The shape of the
river can also be identified in the DEM.

Fig. 3 presents the horizontal and vertical components of
the displacement vector field obtained using the mutual in-
formation similarity measure and the procedure described in
Section II-B. One observes a good correlation between the
horizontal component and the topography shown in Fig. 2(c).
As expected, the vertical (satellite along-track) direction does
not show any particular structure. When this displacement
vector field is used for the registration of the images, a good
superposition is achieved. The detailed analysis of the proce-
dure was carried out in [8].

If we analyze the distribution of the estimated shifts by
computing their histograms, we observe the following behavior
(Fig. 4). When the SPOT image is used as the reference, a high
number of estimated shifts are multiples of 0.5 pixels; if the
ERS image is used as the reference, this effect is attenuated,
and the shifts present a more uniform distribution.

Since the similarity measure is the same for both cases
and so is the optimization procedure, one can conclude that
the subpixel shifts artifacts appear when the ERS image is

Fig. 5. Interpolation of a sampled signal.

interpolated during the similarity optimization. The following
sections will study this effect in detail, and a theoretical model
for the origin of the artifacts will be presented.

IV. ORIGIN OF THE ARTIFACTS

The problem of interpolation artifacts in the similarity sur-
faces has been studied for the case of mutual-information-based
medical image registration [5]–[7]. Pluim et al. [5] show that
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Fig. 6. Evolution of the blurring effect of the interpolators as a function of the shift. (a) Linear. (b) Truncated sinc. (c) Cubic B-spline.

entropy-based registration measures, when plotted as a function
of the geometric transformation, show sudden changes. They
show that this registration function depends on the interpolation
method in the cases of similar sampling step for the two images
to be registered and propose to resample one of the images with
a slightly different sampling step. This solution can be applied
in the case of global image registration where one looks for a
parametric transformation (i.e., affine transformation). In this
case, the resampling introduces a scaling effect which can be
compensated by the geometric transformation. In the case of
disparity-map estimation, the sampling step of the images has
to be the same, in order to approximate the deformations by
local rigid shifts.

Tsao [6] also analyzes the behavior of mutual-information
surfaces for four different interpolators (nearest neighbor,
linear, cubic, and Hamming-windowed sinc). He shows the
influence of the number of bins used for the estimation of
the histograms needed for the computation of the mutual-
information measure. He proposes to blur the histograms and
to introduce some jitter in the sampling step. The jitter will pro-
duce an effect which is analogous to the resampling proposed
by Pluim et al. [5]. One has to note that the blurring of the
histograms can only be applied to histogram-based similarity
measures. Also, the jitter of the sampling step will introduce
local errors which cannot be accepted in subpixel registration.

Ji et al. [7] also analyze these effects and propose other
strategies for reducing the artifacts: image oversampling and

intensity clustering. The image oversampling produces an ef-
fect similar to blurring, and the intensity clustering produces
smoother histograms. Once again, this second solution can only
be applied to histogram-based similarity measures.

Our theoretical model will show that these interpolation
artifacts are not specific to the mutual-information measure,
and that, therefore, their origin does not reside in the histogram
estimation.

A. Theoretical Model

In this section, we show that the origin of the observed
artifacts is the interpolation procedure used for the subpixel
registration. In this procedure, we resample the local image
patches in order to measure the similarities for different shifted
positions. The resampling is performed by image interpolation.
Fig. 5 illustrates the procedure. In order to obtain a shift of
δ < 1 pixels, we have to estimate the image gray levels at
positions which lay between the samples of the image. The
image to be resampled x[n] is considered to be the sampled
version of an ideal continuous image x(t)

x[n] = x(nT )

where T is the sampling step. The shifted image y[n] will
be obtained by sampling the same original image x(t) with
a shifted sampling grid. Assuming that x(t) was correctly
sampled (with respect to the Shannon criterion), we can retrieve
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Fig. 7. Comparison of interpolators.

Fig. 8. Influence of noise level on the registration functions.

x(t) from x[n] by ideal interpolation, i.e., by using a sinc
interpolator.

The sinc interpolator has an infinite impulse response. There-
fore, approximate interpolators will be used. In order to in-
crease the computation speed, we want to use interpolation
filters with a low number of samples.

For a linear interpolator, the interpolated image y(t) for a
shift δ will take the following expression:

y(t) = (1 − δ)x(t − δ) + δx(t + 1 − δ) (5)

and its Fourier transform is

Y (f) = X(f)
[
(1 − δ)e−j2πδf + δe−j2π(δ−1)f

]
. (6)

We see that the interpolated signal y(t) is not exactly equal to
the original signal x(t) due to the fact that we are not using an
ideal interpolator. Instead, we obtain a low-pass filtered version
of the original signal. It is interesting to note that the blurring of
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Fig. 9. Influence of noise level on the estimated shifts.

the image introduced by the interpolation depends on the shift.
Fig. 6(a) shows that the blurring effect increases when the shift
comes close to half a pixel (δ = 1/2).

This means that, in the case of noisy images, the interpolation
has a denoising effect, and therefore, it increases the quality of
the similarity estimation. Since this blurring is not the same for
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Fig. 10. Frequency response of the smoothing prolate filter compared to
different interpolators for δ = 1/2. The 7 × 7 boxcar filter is also shown.

every shift, the similarity surface may show low values for a
null shift (no blurring) and higher values for shifts close to half
a pixel (strong blurring). It is important to note that the artifacts
do not come from the blurring effect itself, but rather from the
difference of blurring effect for different shift values.

Its is now interesting to analyze this effect for other inter-
polators. For the case of an interpolator c(t) truncated to four
samples, the Fourier transform of the interpolated signal takes
the following expression:

Y (f) = X(f)
[
c(δ+1)e−j2π(δ+1)f +c(δ)e−j2πδf

+ c(1−δ)e−j2π(1−δ)f +c(2 − δ)e−j2π(2−δ)f
]
. (7)

For the case of a sinc interpolator, c(t) = sin(πt)/πt. The
frequency response of the interpolator as a function of the shift
δ is shown in Fig. 6(b). We see that the blurring effect is still
dependent on the shift, but also that, for such a short filter, the
continuous frequency is also filtered. This can produce effects
which are worse than the linear interpolator. We will see this in
the following sections.

Finally, we analyze the case of a cubic B-spline interpolator
[10]. In this case, the filter coefficients take the following
expression:

c(t) =





2
3 − 1

2 |x|2(2 − |x|), 0 ≤ |x| < 1
1
6 (2 − |x|)3, 1 ≤ |x| < 2

0, |x| > 2.

(8)

Fig. 6(c) shows the frequency response of the four-sample
cubic B-spline interpolator. We can see that the blurring effect
remains nearly the same for all shifts.

B. Sensitivity Analysis

We analyze here the behavior of the different interpolators
and their effects on the similarity functions. The similarity
function is defined as the value of the similarity measure as a
function of the shift. Without loss of generality, we will apply
the shifts in only one direction. In this case, the similarity
function can be plotted as a one-dimensional (1-D) function.

This analysis will be done for the two similarity measures, the
correlation coefficient and the mutual information.

The data used for these experiments are SPOT 4 images
which are compared to a noisy version of itself. This allows
us to ensure that the images are perfectly coregistered. Additive
white Gaussian noise has been added to the secondary image
with an SNR of 100 dB.

Fig. 7 shows the similarity functions for four different inter-
polators, the three studied in Section IV-A, plus a sinus cardinal
of length equal to ten samples, which is a better approximation
of the ideal one. Even if a similarity function shows only the
behavior for a particular pixel, the examples presented here can
be considered as examples of what occurs for every pixel in
the image. For the case of the correlation coefficient [Fig. 7(a)],
we obtain a behavior which could be predicted from the theory
presented above. The linear and the sinc-4 interpolators have
strong maxima close to the half-pixel shifts. We can observe
that these effects are much weaker for the B-spline interpolator
and that they are nearly inexistent for the sinc-10 one.

It is worth to notice that the erroneous maxima are not exactly
located on the half-pixel shifts and that they are not symmetrical
with respect to the null translation. This is caused by the fact
that we are measuring the similarity between an image and its
noisy shifted blurred version with a degree of blurring which
depends on the shift. The blurring is useful for denoising and
thus for increasing the similarity. On the other hand, the shift
decreases the similarity because the homologous pixels are
further away. Therefore, the combination of these two effects
may produce a similarity maximum whose location depends on
the local content of the image.

This is the case for the mutual-information plots shown
on Fig. 7(b). As discussed in [8], mutual-information peaks
have a higher slope than the correlation coefficient ones. That
means that the effect of erroneous peaks will only appear for
interpolators whose behavior is very sensitive to the shifts.
Also, one could expect that the erroneous maxima will appear
near the null shift. This is what can be observed in the plots. For
the linear interpolator, the peaks appear for about one third of a
pixel. We can also observe that, since mutual information is able
to measure the dependence in the presence of noise [11], the
global maximum is located at zero, even if its value is not much
higher that the secondary maxima. For the case of interpolators
with a more stable smoothing, one can see that there is no
clear peak, meaning that the smoothing effect produces a high
value of mutual information even for shifts larger than half a
pixel. Also, the flatness of the measure makes it unusable in an
optimization problem. Of course, the mutual-information value
is low for integer pixel shifts, since no interpolation is applied
in this case.

We can also analyze the influence of the noise level on the
similarity functions. Fig. 8 shows the behavior of the linear
and the B-spline interpolators for the correlation coefficient
and the mutual information for different SNR of the second-
ary image.

In the case of the correlation coefficient, we observe that the
relative value of the erroneous peaks with respect to the value at
zero is higher for a lower SNR. Of course, the absolute value of
the peaks is lower. We also see that the B-spline interpolator
is more robust to high noise levels. In the case of mutual
information, we observe that the similarity function becomes
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Fig. 11. Influence of low-pass filtering on the estimated pixel shifts for different noise levels.

flat when the noise increases [Fig. 8(c)]. This is coherent with
what we saw in Fig. 7(b) for the most stable interpolators and
is also coherent with Fig. 8(d).

Since the registration functions of Figs. 7 and 8 show only
the behavior of a selected pixel of the image, it is difficult to
infer the global quality of the registration from them. In order
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to study the global quality, we will analyze the histograms of
the estimated shifts. We will study the different combinations
of interpolators (linear, sinc-4, cubic B-spline, and sinc-10),
similarity measures (correlation coefficient and mutual infor-
mation), and noise level. The results are shown in Fig. 9.

As for the previous simulations, 1-D shifts have been applied.
In terms of noise influence, one observes that, the higher the
SNR, the lower the number of shifts at a multiple of 0.5 pixels.
We also observe that, when the SNR increases, the peaks move
close to the null shift.

If we compare the interpolators for a given SNR, say
15 dB, we see that the better the interpolator (linear is worst,
then sinc-4, B-spline, and sinc-10 is the best), the higher the
number of pixels for which the estimated shift is close to zero,
which is the expected value. This is true for both similarity
measures.

V. ATTENUATION OF THE ARTIFACTS

As it has been stated above, we are interested in using
short interpolating filters, since the interpolation is performed
a high number of times during the similarity optimization
procedure. As we have shown above, the interpolation artifacts
are produced by the blurring effects of the interpolators. More
precisely, the origin of the artifacts is not the blurring effect
itself but rather the difference of blurring intensity as a function
of the applied shift. We have shown, for instance, that, even if
the B-spline interpolator has a stronger blurring effect than the
linear interpolator, since its blurring remains nearly constant
for all shifts, it has better performances for the disparity-map
estimation.

The strategy proposed here for reducing the interpolation
artifacts is a very simple one. Since the interpolator is going to
introduce a blurring effect, we can smooth the secondary image
with a filter whose transfer function is identical (in modulus)
to the maximum blurring effect of the interpolator. This can be
done in a preprocessing step.

However, when observing Fig. 6, we see that the evolution
of the blurring effect may not be only related to the highest
frequencies of the signal, and therefore, selecting the transfer
function of the preprocessing filter could be tricky.

For instance, choosing a simple boxcar filter for preprocess-
ing can produce artifacts introduced by the secondary lobes of
the filter. These lobes come from the windowing used for the
truncation of the filter’s impulse response.

In order to study the improvement of the subpixel shift
estimation for the different interpolators, we choose to use the
same smoothing filter for all of them. In order to reduce the
secondary lobes of the smoothing filter and to assure a short
impulse response, we propose to use a prolate function [12],
[13]. The prolate filter is one class of the nonrecursive finite
impulse response filters. It is superior to other filters in this class
in that it has a maximum energy concentration in the frequency
passband and minimum ringing in the time domain.

A prolate filter with seven samples is shown in Fig. 10 and is
compared to the maximum smoothing for several interpolators.
The frequency response of the 7 × 7 boxcar filter, with its
secondary lobes, is also shown.

Fig. 11 shows the same kind of analysis as Fig. 9, but with the
use of the prolate filter as a preprocessing step for the secondary

image. The first remark we can make is that the peaks at multi-
ples of 0.5 pixels have vanished for both similarity measures
and for all interpolators. The behavior of the correlation is
always better than that of the mutual information.

We also see that, for the high SNR values, the best results
are obtained for the linear interpolator. However, for low SNR
values, the better the interpolator, the better are the estimated
shifts. We can also see that, for the mutual-information case,
good results are only obtained with the linear and the sinc-4
interpolators, and for the highest SNR value.

VI. CONCLUSION

This paper has presented the problem of interpolation-
induced artifacts in the procedure of disparity-map estimation
used for subpixel image registration. The problem has been
introduced with a real case, where the presence of wrongly
estimated shifts when a radar image is interpolated have been
shown.

A theoretical explanation of the origin of the artifacts has
been given, and it demonstrated that the blurring effect of
the interpolator, which is dependent on the applied shift, is
responsible for the errors observed in the registration functions.

Several interpolators have been compared under different
SNR conditions. Finally, it has been shown that a preprocessing
step which smoothes the secondary interpolated image can
solve the problem. However, attention has to be paid to the
choice of the smoothing filter. Indeed, simple filters, as the
boxcar one, have to be avoided since they present secondary
lobes for the frequencies where the interpolation artifacts occur.

Even if the solution presented here allows for an improve-
ment of the estimation of subpixel-accuracy disparity maps,
more work has to be done in order to:

1) analyze the effects of the interpolation for other image
modalities, as infrared data, for example;

2) study the influence of image resolution and type of land-
scape in the quality of the estimated shifts;

3) propose edge-preserving smoothing filters which, com-
bined with different interpolators, could help to attenuate
the interpolation artifacts at the same time that they
preserve high-frequency content which can be useful for
a precise disparity estimation.
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Bivariate Gamma Distributions for Image
Registration and Change Detection

Florent Chatelain, Jean-Yves Tourneret, Member, IEEE, Jordi Inglada, and André Ferrari

Abstract—This paper evaluates the potential interest of using
bivariate gamma distributions for image registration and change
detection. The first part of this paper studies estimators for the
parameters of bivariate gamma distributions based on the max-
imum likelihood principle and the method of moments. The per-
formance of both methods are compared in terms of estimated
mean square errors and theoretical asymptotic variances. The mu-
tual information is a classical similarity measure which can be used
for image registration or change detection. The second part of the
paper studies some properties of the mutual information for bi-
variate Gamma distributions. Image registration and change de-
tection techniques based on bivariate gamma distributions are fi-
nally investigated. Simulation results conducted on synthetic and
real data are very encouraging. Bivariate gamma distributions are
good candidates allowing us to develop new image registration al-
gorithms and new change detectors.

Index Terms—Correlation coefficient, image change detection,
image registration, maximum likelihood, multivariate gamma dis-
tributions, mutual information.

I. INTRODUCTION

THE univariate gamma distribution is uniquely defined in
many statistical textbooks. However, extensions defining

multivariate gamma distributions (MGDs) are more controver-
sial. For instance, a full chapter of [1] is devoted to this problem
(see also references therein). Most journal authors assume that a
vector is distributed according to an MGD if
the marginal distributions of are univariate gamma distribu-
tions. However, the family of distributions satisfying this con-
dition is very large. In order to reduce the size of the family of
MGDs, S. Bar Lev, and P. Bernardoff recently defined MGDs by
the form of their moment generating function or Laplace trans-
forms [2], [3]. The main contribution of this paper is to eval-
uate these distributions as candidates for image registration and
change detection.

Given two remote sensing images of the same scene , the
reference, and , the secondary image, the registration problem
can be defined as follows: determine a geometric transformation
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which maximizes the correlation coefficient between image
and the result of the transformation . A fine modeling of

the geometric deformation is required for the estimation of the
coordinates of every pixel of the reference image inside the sec-
ondary image. The geometric deformation is modeled by local
rigid displacements [4]. The key element of the image regis-
tration problem is the estimation of the correlation coefficient
between the images. This is usually done with an estimation
window in the neighborhood of each pixel. In order to estimate
the local rigid displacements with a good geometric resolution,
one needs the smallest estimation window. However, this leads
to estimations which may not be robust enough. In order to per-
form high-quality estimations with a small number of samples,
we propose to introduce a priori knowledge about the image sta-
tistics. In the case of power radar images, it is well known that
the marginal distributions of pixels are gamma distributions [5].
Therefore, MGDs seem good candidates for the robust estima-
tion of the correlation coefficient between radar images.

The change detection problem can be defined as follows.
Consider two co-registered synthetic aperture radar (SAR)
intensity images and acquired at two different dates and

. Our objective is to produce a map representing the changes
occurred in the scene between time and time . The final
goal of a change detection analysis is to produce a binary map
corresponding to the two classes: change and no change. The
problem can be decomposed into two steps: 1) generation of
a change image and 2) thresholding of the change image in
order to produce the binary change map. The overall detection
performance will depend on both, the quality of the change
image and the quality of the thresholding. In this work, we
choose to concentrate on the first step of the procedure, that is,
the generation of an indicator of change for each pixel in the
image. The change indicator can be obtained by computing the
local correlation between both images, for each pixel position.
For interesting approaches in the field of unsupervised change
image thresholding, the reader can refer to the works of Bruz-
zone and Fernández Prieto [6], [7], Bruzzone and Serpico [8],
and Bazi et al. [9]. The change indicator can also be useful
by itself. Indeed, the end user of a change map often wants,
not only the binary information given after thresholding, but
also an indicator of the change amplitude. In order to evaluate
the quality of a change image independently of the choice of
the thresholding algorithm, one can study the evolution of the
probability of detection as a function of the probability of false
alarm, when a sequence of constant thresholds is used for the
whole image. As in the image registration problem, a small
estimation window is required in order to obtain a high-resolu-
tion detector, that is, a detector being able to identify changes

1057-7149/$25.00 © 2007 IEEE
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with a small spatial extent. Again, the introduction of a priori
knowledge through MGDs may improve the estimation accu-
racy when a small number of samples is used.

This paper is organized as follows. Section II recalls some
important results on MGDs. Section III studies estimators of the
unknown parameters of a bivariate gamma distribution (BGD).
These estimators are based on the classical maximum likelihood
method and method of moments. Section IV studies interesting
properties of the mutual information for BGDs. The application
to image registration and change detection is discussed in Sec-
tion V. Conclusions are finally reported in Section VI.

II. MULTIVARIATE GAMMA DISTRIBUTIONS

A. Definitions

A polynomial with respect to is affine
if the one variable polynomial can be written

(for any ), where and are polynomials
with respect to the s with . A random vector

is distributed according to an MGD on with
shape parameter and scale parameter (denoted as

) if its moment generating function (also called Laplace
transform) is defined as follows [3]:

(1)

where and is an affine polynomial. It is important to
note the following points.

• The affine polynomial has to satisfy appropriate condi-
tions including . In the general case, determining
necessary and sufficient conditions on the pair such
that exist is a difficult problem. The reader is in-
vited to look at [3] for more details.

• By setting for in (1), we obtain the Laplace
transform of , which is clearly a gamma distribution with
shape parameter and scale parameter , where is the
coefficient of in .

A BGD corresponds to the particular case and is de-
fined by its moment generating function

(2)

with the following conditions:

(3)

In the bidimensional case, (3) are necessary and sufficient con-
ditions for (2) to be the moment generating function of a proba-
bility distribution defined on . Note again that (2) implies
that the marginal distributions of and are “gamma distri-
butions” (denoted as and ) with
the following densities:

where is the indicator function defined on
( if , else), for .
Here, is the usual gamma function defined in [10, p. 255].

B. Bivariate Gamma pdf

Obtaining tractable expressions for the probability density
function (pdf) of a MGD defined by (1) is a challenging
problem. However, in the bivariate case, the problem is much
simpler. Straightforward computations allow to obtain the
following density (see [1, p. 436] for a similar result)

where and is defined as follows:

(4)

Note that is related to the confluent hypergeometric func-
tion (see [1, p. 462]).

C. BGD Moments

The Taylor series expansion of the Laplace transform can
be written

(5)

The moments of a BGD can be obtained by differentiating (5).
For instance, the mean and variance of (denoted and

respectively) can be expressed as follows:

(6)

for 1, 2. Similarly, the covariance and correla-
tion coefficient of a BGD can be easily computed

(7)

(8)

It is important to note that for a known value of , a BGD is
fully characterized by which will
be denoted in the remaining of the paper. In-
deed, and are obviously related by a one-to-one
transformation. Note also that the conditions (3) ensure that the
covariance and correlation coefficient of the couple are
both positive.

More computations allow to obtain a general formula for the
moments , for , of a BGD

(9)
where is the Pochhammer symbol defined by and
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for any integer (see [10, p. 256]). The mutual information of
a BGD is related to the moments of and for
1, 2. Straightforward computations detailed in Appendices I and
II yield the following results:

(10)

(11)

where is the digamma function and is
the Gauss’s hypergeometric function (see [10, pp. 555–566]).

III. PARAMETER ESTIMATION

This section addresses the problem of estimating the
unknown parameter vector from independent vectors

, where is distributed ac-
cording to a BGD with parameter vector . Note that the
parameter is assumed to be known here, as in most practical
applications. However, this assumption could be relaxed.

A. Maximum Likelihood Method

1) Principles: The maximum likelihood (ML) method can
be applied in the bivariate case since a closed-form
expression of the density is available.1 In this particular case,
after removing the terms which do not depend on , the log-
likelihood function can be written as follows:

(12)

where , and
is the sample mean of for , 2. By differentiating the
log-likelihood with respect to , and , and by noting that

, the following set of equations is obtained:

(13)

(14)

where

(15)

The maximum likelihood estimators (MLEs) of and are
then easily obtained from these equations

(16)

1The problem is much more complicated in the general case where d > 2

since there is no tractable expression for the MGD density. In this case, the
coefficients of P can be estimated by maximizing an appropriate composite
likelihood criterion such as the pairwise log-likelihood. The reader is invited to
consult [11] for more details.

After replacing and by their MLEs in (14), we can easily
show that the MLE of is obtained by computing the root

of the following function:

(17)

where

This is achieved by using a Newton–Raphson procedure initial-
ized by the standard correlation coefficient estimator [defined
in (25)]. The convergence of the Newton–Raphson procedure is
generally obtained after few iterations.

2) Performance: The asymptotic properties of the ML
estimators and can be easily derived from the
moments of the univariate gamma distributions and

. These estimators are obviously unbiased, convergent
and efficient. However, the performance of is more difficult
to study. Of course, the MLE is known to be asymptotically
unbiased and asymptotically efficient, under mild regularity
conditions. Thus, the mean square error (MSE) of the estimates
can be approximated for large data records by the Cramér–Rao
lower bound (CRLB). For unbiased estimators, the CRLBs of
the unknown parameters , and can be computed by
inverting the Fisher information matrix, whose elements are
defined by

(18)

where . However this com-
putation is difficult because of the term appearing in the
log-likelihood. In such situation, it is very usual to approximate
the expectations by using Monte Carlo methods. More specif-
ically, this approach consists of approximating the elements of
the Fisher information matrix as follows:

(19)

where is distributed according to the BGD of density
and is the number of Monte Carlo runs.

B. Method of Moments

1) Principles: This section briefly recalls the principle of the
method of moments. Consider a function and
the statistic of size defined as

(20)

where is usually chosen such that is composed of em-
pirical moments. Denote as

(21)

The moment estimator of is constructed as follows:

(22)
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where . By considering the function

the following result is obtained:

(23)
The unknown parameters can then be expressed as
functions of . For instance, the fol-
lowing relations are obtained:

(24)

yielding the standard estimators

(25)

2) Performance: The asymptotic performance of the esti-
mator can be derived by imitating the results of [12] derived
in the context of time series analysis. A key point of these proofs
is the assumption which is verified herein by
applying the strong law of large numbers to (20). As a result,
the asymptotic MSE of can be derived

(26)

where is the Jacobian matrix of the vector at point
and

(27)

In the previous example, according to (24), is
defined as follows:

(28)

The partial derivatives of and with respect to ,
are trivial. By denoting ,

those of can be expressed as

(29)

The elements of can be computed from the moments of
which are obtained by differentiating the Laplace trans-

form (2). The asymptotic MSEs (26) are then computed by using
(9).

IV. MUTUAL INFORMATION FOR BGDs

Some limitations of the standard estimated correlation coef-
ficient can be alleviated by using other similarity measures [4].
These similarity measures include the well-known mutual infor-
mation. The mutual information of a BGD of shape parameter

and scale parameter can be defined as fol-
lows:

(30)
where and are the marginal densities of the
vector and is its joint pdf. This section
shows that the mutual information of BGDs is related to the cor-
relation coefficient by a one-to-one transformation. Interesting
approximations of this mutual information for and
are also derived.

A. Numerical Evaluation of the Mutual Information

By replacing the densities , and by
their analytical expressions, the following results can be ob-
tained:

(31)

The first terms of can be easily expressed as a
function of by using the mean of a univariate gamma distribu-
tion given in (6). The mutual information can
then be expressed as follows:

(32)

However, a simple closed-form expression for
cannot be obtained, requiring to

use a numerical procedure for its computation.
The numerical evaluation of can be significantly simplified

by noting that and have the same mutual
information for any . Indeed, this property implies
the following result:

(33)

where . As a consequence,
can be computed by replacing

by , where . This expec-
tation can be precomputed for all possible values of and for

, simplifying the numerical evaluation of .
Moreover, it is interesting to note that (33) shows that the

mutual information and the correlation are related by a
one-to-one transformation. Consequently, and should pro-
vide similar performance for image registration and change de-
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tection. The advantage of using the mutual information will be
discussed later.

B. Approximations of the Mutual Information

The numerical evaluation of can be avoided for values of
closed to 0 and 1 by using approximations. Indeed, the following
results can be obtained:

1) : The second-order Taylor expansion of
around can be written

(34)

where tends to 0, as . As a consequence, can
be approximated as follows:

(35)

By using (9), the mutual information can be finally approx-
imated as follows:

(36)

2) : The Taylor expansion of around can be
written

(37)

where tends to 0, as . As a consequence, can be
approximated as follows:

(38)

After replacing the means of , and de-
rived in Appendices I and II, the following result can be ob-
tained:

(39)
Fig. 1 shows that the mutual information can be accurately
approximated by (36) and (39) for and . This
figure has been obtained with the parameters and
without loss of generality (see discussion at the beginning of this
section).

V. APPLICATION TO IMAGE REGISTRATION

AND CHANGE DETECTION

This section explains carefully how BGDs can be used for
image registration and change detection. Theoretical results are
illustrated by many simulations conducted with synthetic and
real data.

Fig. 1. Mutual information and its approximations for r ! 0 and r ! 1.

A. Synthetic Data

1) Generation: The generation of a vector
distributed according to a BGD has been performed as follows.

• Simulate independent multivariate Gaussian vectors of
denoted as with means (0,0) and the fol-

lowing 2 2 covariance matrix:

• Compute the th component of as
, where is the th component

of .
By computing the Laplace transform of , it can be shown
that the two previous steps allow to generate random vectors

distributed according to a BGD whose marginal
distributions are univariate gamma distributions
and . Moreover, the correlation coefficient of

is equal to (the reader is invited to consult
Appendix III for more details).

2) Estimation Performance: The first simulations compare
the performance of the method of moments with the ML method
as a function of . Note that the possible values of are

, where (more precisely
). These values are appro-

priate for the image registration and change detection problems,
as explained in the next sections. The number of Monte Carlo
runs is 1000 for all figures presented in this section. The other
parameters for this first example are , and

(1-Look images). Figs. 2 and 3 show the MSEs of the esti-
mated correlation coefficient for two different correlation struc-
tures ( and ). The circle curves correspond to the
estimator of moments whereas the triangle curves correspond
to the MLE. These figures show the interest of the ML method,
which is much more efficient for this problem than the method of
moments. The figures also show that the difference between the
two methods is more significant for large values of the correla-
tion coefficient . Note that the theoretical asymptotic MSEs of
both estimators determined in (18) and (26) are also displayed
in Figs. 2 and 3 (continuous lines). The theoretical MSEs are
clearly in good agreement with the estimated MSEs, even for
small values of . This is particularly true for large values of .

3) Detection Performance: We consider synthetic vectors
(coming from 128 128 synthetic images)

distributed according to BGDs with and
modeling the presence and absence of changes, respectively.
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Fig. 2. Log MSEs versus log(n) for parameter r(r = 0:2).

Fig. 3. Log MSEs versus log(n) for parameter r(r = 0:8).

The correlation coefficient of each bivariate vector
(for ) is estimated from vectors

belonging to windows of size centered
around the pixel of coordinates in the two analyzed im-
ages. The following binary hypothesis test is then considered:

(40)

where is a threshold depending on the probability of false
alarm and is an estimator of the correlation coefficient (ob-
tained from the method of moments or the maximum likelihood
principle). The performance of the change detection strategy
(40) can be defined by the two following probabilities [13, p.
34]

(41)

(42)

where and are the pdfs of under hypotheses
and , respectively. Thus, for each value of , there exists

Fig. 4. ROCs for synthetic data for different window sizes. (a) n = 9 � 9;
(b)n = 15 � 15; (c) n = 21� 21.

a pair . The curves of as a function of are
called receiver operating characteristics (ROCs) [13, p. 38].

The ROCs for the change detection problem (40) are depicted
in Fig. 4(a)–(c) for three different window sizes corresponding
to . The ML estimator clearly outper-
forms the moment estimator for these examples. However, it is
interesting to note that the two estimators have similar perfor-
mances for large window sizes.

B. Application to Image Registration

This section studies an image registration technique based on
BGDs. More precisely, consider two images whose pixels are
denoted and . Given the left image

, we propose the following basic three-step image registration
algorithm.

• Step 1: Determine the search area in the right image .
Here, we use images that have been previously registered
by a human operator using appropriate interactive soft-
ware, a digital elevation model and geometrical sensor
models. The use of registered images allows us to validate
the results, since the expected shift between the images is
equal to 0. For this experiment and without loss of gener-
ality, the search area is reduced to a line (composed of ten
pixels before and ten pixels after the pixel of interest).

• Step 2: For each pixel in the search area, estimate a sim-
ilarity measure (correlation coefficient or mutual informa-
tion) between and .

• Step 3: Select the pixel providing the largest similarity.
This three-step procedure has been applied to a couple of
Radarsat 1-Look images acquired before and after the eruption
of the Nyiragongo volcano which occurred in January 2002.
The Radarsat images are depicted in Fig. 5(a) (before eruption)

133



1802 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 7, JULY 2007

Fig. 5. Radarsat images of the Nyiragongo volcano. (a) Before; (b) after;
(c) mask.

and (b) (after eruption). Note that some changes due to the
eruption can be clearly seen on the landing track for example.
Fig. 5(c) indicates the pixels of the image which have been
affected by the eruption (white pixels). This reference map
was obtained by photo-interpreters—who used the same SAR
images we are using—and ground truth elaborated by the
United Nations Office for the Coordination of Humanitarian
Affairs (OCHA) Humanitarian Information Center (HIC) on
January 27, 2002, that is, a few days after the eruption. This
reference map was afterwards validated by a terrain mission.
The types of change covered are: presence of a lava flow over
old existing lava flows, damaged buildings (areas with different
types of habitat). The area of study does not include forest or
areas of dense vegetation (see http://www.users.skynet.be/tech-
naphot/webgomma/index.htm for some examples of damages).

Fig. 6(a)–(c) shows an average of the estimated corre-
lation coefficients with errobars corresponding to

. These estimates have been com-
puted for all black pixels which have not been affected by the
eruption for different window sizes. More precisely, for every
black pixel of the left figure, we consider a window of size

centered around . The same window is
also considered in the right picture around pixel . The correla-
tion coefficient between the two pixels and is estimated by
using the couples of pixels located in the
left and right windows. This operation is repeated for different
central pixels belonging to the search area (i.e., the 21 pixels
of ),
where is the shift between the right and left windows. The
results are averaged over all black pixels displayed in the mask
Fig. 5(c). The estimated correlation coefficient is maximum
when , or equivalently , i.e., when the left and
right windows are centered at the same location. This result
indicates that the correlation coefficient can be efficiently used
for image registration. Moreover, it is interesting to study how
the estimator selectivity (which can be defined as the relative
amplitude of the peak compared to that of the plateau) varies
from one estimator to another and depends on the window
size. In particular, the ML estimator provides a slightly better
selectivity than the estimator of moments. Note that the errobars
are very similar for the two estimators. Even if the different

Fig. 6. Averaged correlation coefficient estimates versus � for black pixels with
errorbars (ML: maximum likelihood estimator, moment: moment estimator) for
Nyiragongo images for several window sizes. (a) Window size n = 7 � 7;
(b) window size n = 9� 9; (c) window size n = 15� 15.

methods provide similar results for image registration, it is
important to note that the proposed framework allows one to
define an interesting joint distribution for the vector .
This distribution might be used for other tasks as, for instance,
joint image segmentation and classification of both data sets.

The same operation is conducted on a rectangular region
composed of white pixels of the mask Fig. 5(c) (which have
been affected by the eruption) depicted in white in Fig. 5(a)
and (b). The results presented in Fig. 7 clearly show that the
estimated correlation coefficient is much smaller when com-
puted on a region affected by the eruption (and also that there
is no peak which might be used for registration). This result is
interesting and can be used for detecting changes between the
two images, as illustrated in the next section.

C. Application to Change Detection

This section considers two 1-Look images acquired at dif-
ferent dates around Gloucester (U.K.) before and during a flood
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Fig. 7. Averaged correlation coefficient estimates versus � for white pixels be-
longing to the Nyiragongo images square region (ML: maximum likelihood es-
timator; moment: moment estimator).

Fig. 8. Radarsat images of Gloucester before and after flood. (a) Before;
(b) after; (c) mask.

(on September 9, 2000 and October 21, 2000 respectively). The
images as well as a mask indicating the pixels affected by the
flood are depicted in Fig. 8(a)–(c). The reference map Fig. 8(c)
was obtained by photo-interpreters—who used the same SAR
images we are using—and a reference map built from Landsat
and SPOT data acquired one day after the radar image.

This section compares the performance of the following
change detectors:

• the ratio edge detector which has been intensively used for
SAR images [14], [15];

• the correlation change detector, where in (40) has been
estimated with the moment estimator (referred to as “Cor-
relation Moment”);

• the correlation change detector, where in (40) has been
estimated with the ML method for BGDs (referred to as
“Correlation ML”).

The ROCs for this change detection problem are shown in
Fig. 9(a)–(c) for different window sizes . The correlation ML
detector clearly provides the best results.

Fig. 9. ROCs for Gloucester images for different window sizes. (a) n = 9�9;
(b) n = 15 � 15;; (c) n = 21� 21.

The last experiments illustrate the advantage of using the mu-
tual information for change detection. Consider the following
change detector based on the mutual information:

(43)

where is the estimated mutual information obtained
by numerical integration of (32). The ROCs obtained with the
detectors (40) and (43) are identical, reflecting the one-to-one
transformation between the parameters and . How-
ever, the advantage of using the mutual information for change
detection is highlighted in Fig. 10, which shows the average
probability of error (where

is the probability of nondetection) as a function of the
threshold for the change detectors (40) and (43). For a prac-
tical application, it is important to choose a threshold for
these change detection problems. This choice can be governed
by the value of the probability of error . Assume that we
are interested in having a probability of error satisfying

. Fig. 10 indicates that there are clearly more values of the
threshold satisfying this condition for the curve “Mutual
information” than for the curve “Correlation ML.” This remains
true whatever the value of the maximum probability of error .
Consequently, the threshold is easier to be adjusted with the de-
tector based on the mutual information (43) than the detector
based on the correlation coefficient (40).

VI. CONCLUSION

This paper studied the performance of image registration and
change detection techniques based on bivariate gamma distri-
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Fig. 10. Average probability of errorP = 1=2(P +P ) versus threshold
� for Gloucester images for an estimation window of size n = 9� 9.

butions. Both methods required to estimate the correlation co-
efficient between two images. Estimators based on the method
of moments and on the maximum likelihood principle were
studied. The asymptotic performance of both estimators was de-
rived. The application to image registration and change detec-
tion was finally investigated.

The results showed the interest of using prior information
about the data. On the other hand, the method presented here
should not be used for more general cases where the BGD model
does not hold. For these cases, the use of more general models
as, for instance, copulas [16] or bivariate versions of the Pearson
system [1, pp. 6–9], should be studied.

APPENDIX I
WHERE

The moment of can be determined by the simple change
of variable

(44)

APPENDIX II
AND ITS APPROXIMATION FOR WHERE

A. Computation

The moment of the random variable is derived from
the probability density function of the bivariate vector

The definition of given in (4) yields

since

Here is the Gauss’s hypergeometric function (see [10, pp.
555–566]) defined as

and is the Pochlammer symbol presented in Section II-C
(note that for any integer and any real

). By using the following properties of Gauss’s hyperge-
ometric functions.

1) The hypergeometric series converges if is
not a negative integer for complex numbers such that

or if .
2) for

all of (see [10, p. 559]).
The following results can be obtained

B. Approximation for

The following identity (Gauss’s hypergeometric theorem):

leads to
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and to the following first-order Taylor expansion around :

where tends to 0, as . Using

for

the previous Taylor expansion can be written

Finally

APPENDIX III
GENERATION OF SYNTHETIC DATA DISTRIBUTED

ACCORDING TO BGDs

This appendix shows that the vector where
(where is the th component

of , with )
is distributed according to a BGD whose marginals are Gamma
distributions and and whose correla-
tion coefficient is . By using the independence between vec-
tors , the Laplace transform of evaluated at

can be written

where

By using the probability density function of a bivariate normal
distribution , the Laplace transform can be finally ex-
pressed as

where is the identity matrix in dimension 2. According to the
definition (2), the vector is distributed according to a BGD
with shape parameter and scale parameters ,

, . Property, (8) ensures that the
correlation coefficient of is .
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Change Detection in Multisensor SAR Images
Using Bivariate Gamma Distributions

Florent Chatelain, Jean-Yves Tourneret, and Jordi Inglada

Abstract—This paper studies a family of distributions con-
structed from multivariate gamma distributions to model the
statistical properties of multisensor synthetic aperture radar
(SAR) images. These distributions referred to as multisensor
multivariate gamma distributions (MuMGDs) are potentially
interesting for detecting changes in SAR images acquired by
different sensors having different numbers of looks. The first part
of this paper compares different estimators for the parameters of
MuMGDs. These estimators are based on the maximum likelihood
principle, the method of inference function for margins, and the
method of moments. The second part of the paper studies change
detection algorithms based on the estimated correlation coefficient
of MuMGDs. Simulation results conducted on synthetic and real
data illustrate the performance of these change detectors.

Index Terms—Change detection, correlation coefficient, max-
imum likelihood, multivariate gamma distributions.

I. INTRODUCTION

COMBINING information acquired from multiple sensors
has become very popular in many signal and image pro-

cessing applications. In the case of earth observation applica-
tions, there are two reasons for that. The first one is that the fu-
sion of the data produced by different types of sensors provides
a complementarity which overcomes the limitations of a specific
kind of sensor. The other reason is that, often, in operational ap-
plications, the user does not have the possibility to choose the
data to work with and has to use the available archive images or
the first acquisition available after an event of interest. This is
particularly true for monitoring applications where image regis-
tration and change detection approaches have to be implemented
on different types of data [1], [2].

Both image registration and change detection techniques con-
sists of comparing two images , the reference, and , the sec-
ondary image, acquired over the same landscape—scene—at
two different dates. Usually, the reference image is obtained
from an archive and the acquisition of the secondary image is
scheduled after an abrupt change, like a natural disaster. In the
case of the change detection, the goal is producing an indicator
of change for each pixel of the region of interest. This indicator
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of change is the result of applying locally a similarity measure
to the two images. This similarity measure is usually chosen as
the correlation coefficient or other statistical feature in order to
deal with noisy data.

The estimation of the similarity measure is performed locally
for each pixel position. Since a statistical estimation has to be
performed, and only one realization of the random variable is
available, the images are supposed to be locally stationary and
the ergodicity assumption allows to make estimates using sev-
eral neighbor pixels. This neighborhood is the so-called estima-
tion window. In order for the stationarity assumption to hold,
this estimation window has to be small. On the other hand, ro-
bust statistical estimates need a high number of samples. There-
fore, the key point of the estimation of the similarity measure is
to perform high quality estimates with a small number of sam-
ples. One way to do so is to introduce a priori knowledge about
the image statistics.

In the case of power radar images, it is well known that the
pixels are marginally distributed according to gamma distribu-
tions [3]. Therefore, multivariate gamma distributions (having
univariate gamma margins) seem good candidates for the ro-
bust estimation of the correlation coefficient between radar im-
ages. When multidate power radar images are acquired from
different sensors, the numbers of looks associated with the dif-
ferent images can be different. As the number of looks is the
shape parameter of the gamma distribution, this leads to study
multivariate gamma distributions whose margins have different
shape parameters.

A family of multivariate gamma distributions has been re-
cently defined by Bar Lev and Bernardoff [4], [5]. These dis-
tributions are defined from an appropriate moment generating
function. Their margins are distributed according to univariate
gamma distributions having the same shape parameter. They
have recently shown interesting properties for registration and
change detection in SAR images acquired by the same sensor
(i.e., for images having the same number of looks) [6], [7]. This
paper studies a new family of multivariate distributions whose
margins are univariate gamma distributions with different shape
parameters referred to as multisensor multivariate gamma dis-
tributions (MuMGDs). The application of MuBGDs to change
detection in SAR images is also investigated.

This paper is organized as follows. Section II recalls impor-
tant results on monosensor multivariate gamma distributions
(MoMGDs). Section III defines the family of MuMGDs consid-
ered for change detection in multisensor SAR images. Section
IV studies the maximum likelihood estimator (MLE), the infer-
ence function for margins (IFM) estimator, and the estimator of
moments for the unknown parameters of MuMGDs. Section V
presents some simulation results illustrating the performance of
MuMGDs for parameter estimation and change detection on

1057-7149/$25.00 © 2008 IEEE
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synthetic and real SAR images. Conclusions and perspectives
are finally reported in Section VI.

II. MONOSENSOR MULTIVARIATE GAMMA DISTRIBUTIONS

A. Definition

A random vector is distributed ac-
cording to an MoMGD on with shape parameter and scale
parameter if its moment generating function, or Laplace
transform, is defined as [5]

(1)

where and is a so-called affine
polynomial.1 The Laplace transform of is obtained by set-
ting for in (1). This shows that is distributed
according to a univariate gamma distribution with shape param-
eter and scale parameter , denoted as . Thus,
all margins of are univariate gamma distributions with the
same shape parameter .

A monosensor bivariate gamma distribution (MoBGD) cor-
responds to the particular case and is defined by its affine
polynomial

(2)

with the following conditions:

(3)

It is important to note that the conditions (3) ensure that (2) is
the Laplace transform of a probability distribution defined on

. However, in the general case , determining
necessary and sufficient conditions on and such that (1) is
the Laplace transform of a probability distribution defined on

is a difficult problem (see [5] for more details). The main
properties of MoBGDs have been studied in [6].

Some important results required for the present paper are re-
called below.

B. Moments

The moments of an MoBGD can be obtained by differenti-
ating the Laplace transform (2). For instance, the mean and vari-
ance of (denoted as and , respectively) can be
expressed as follows:

(4)

for . Similarly, the covariance and corre-
lation coefficient of an MoBGD are

(5)

1A polynomial P (zzz) where zzz = (z ; . . . ; z ) is affine if the one variable
polynomial z 7! P (zzz) can be written Az +B (for any j = 1; . . . ; d), where
A and B are polynomials with respect to the z s with i 6= j .

It is important to note that when (or equiva-
lently ) the Laplace transform of can be factorized
as follows:

where the two factors in the right hand side are the Laplace trans-
forms of and . As a consequence, the random variables

and of an MoBGD are independent if and only if they
are uncorrelated (as in the Gaussian case).

C. Probability Density Function (PDF)

The pdf of an MoBGD can be expressed as follows (see [8,
p. 436] for a similar result):

(6)

where is the indicator function on
if and otherwise),

and is related to the confluent hypergeometric
function [8, p. 462] defined by

III. MULTISENSOR GAMMA DISTRIBUTIONS

A. Definition

A random vector is distributed according
to a MuMGD with scale parameter and shape parameter

, denoted as , if it can be constructed
as follows:

(7)

where
• is a random vector distributed ac-

cording to an MoMGD on with shape parameter and
scale parameter , i.e., ;

• are independent random variables distributed
according to univariate gamma distributions (with the con-
vention when )
with ;

• vector is independent on .
By using the independence property between and , the

Laplace transform of can be written

(8)
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By setting for in (9), we observe that the random
variable is distributed according to a univariate gamma dis-
tribution with scale parameter and shape parameter , i.e.,

. Thus, all margins of have different shape pa-
rameters in the general case. Note that the definition above as-
sumes that the first univariate margin has a shape parameter

smaller than all other shape parameters without loss
of generality. Note also that an MuMGD reduces to an MoMGD
for .

A multisensor bivariate gamma distribution (MuBGD) corre-
sponds to the particular case and is defined by its Laplace
transform

(9)

with the following conditions:

(10)

In the bidimensional case, the conditions (10) ensure that (9) is
the Laplace transform of a probability distribution defined on

.

B. MuBGD Pdf

According to (7), a vector distributed ac-
cording to an MuBGD (i.e., ) is constructed from
a random vector distributed according to an
MoBGD whose pdf is denoted as and a random variable

independent on with pdf . By using
the independence assumption between and , the density of

can be expressed as

(11)

Straightforward computations leads to the following expression:

(12)

where and where is the so-called Horn
function. The Horn function is one of the twenty convergent
confluent hypergeometric series of order two, defined as [9]

(13)

where is the Pochhammer symbol such that
and for any positive integer .
It is interesting to note that the relation

allows one to show that
the MuBGD pdf defined in (13) reduces to the MoBGD pdf (6)
for .

C. MuBGD Moments

The moments of can clearly be obtained from the moments
of and . This section concentrates on MuBGDs defined by

, where is an MoBGD

with mean , correlation coefficient and shape pa-
rameter , and is a univariate gamma distribution with mean

and shape parameter . Using the independence prop-
erty between and , the following results can be obtained:

(14)

for all . The moments of an MoBGD were derived
in [6]

(15)

for all . Expressions (14) and (15) can be used
to derive analytical expressions of MuMGD moments. For in-
stance, the first and second order moments can be written as

It is interesting to note that the conditions (3) ensure that the
correlation coefficient satisfy the constraint

. In other words, the normalized correlation coefficient
defined by

is such that . As explained in Section
II-B, the random variables and are independent if and
only if . Since is independent from and

, a necessary and sufficient condition for the margins of an
MuBGD and to be independent is . Note,
finally, that for known values of the shape parameters and

, an MuBGD is fully characterized by the parameter vector
, since and are re-

lated by a one-to-one transformation.

IV. PARAMETER ESTIMATION FOR MUBGDS

This section studies different methods for estimating the pa-
rameters of MuBGDs.2 The following notations are used in the
rest of this paper:

inducing . Note that the parameters
and can be expressed as functions of as follows

2The results proposed here could be used to estimate the parameters of
MuMGDs by using the concept of composite likelihood. The interested reader
is invited to consult [10], [11], and references therein for more details.
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and . Note
also that the parameters and are assumed to be known in
this paper, as in most practical applications. In the case where

and are unknown, these parameters should be included in
and estimated jointly with and .3

A. Maximum Likelihood (Ml) Method

1) Principles: The ML method can be applied to since a
closed-form expression of its pdf is available. After removing
the terms which do not depend on , the log-likelihood function
of can be written

(16)

where
are the sample means of and and defined

previously can be expressed as function of using the relation
. By differentiating the log-like-

lihood with respect to (wrt) , the MLE of is obtained as a
solution of

where is the so-called score function,
or equivalently by solving

(17)

(18)

(19)

with

3The interested reader is invited to consult [12] for a related example where
the shape parameter of a mono sensor multivariate gamma distribution (q =
q = q) was estimated from mixed Poisson data. This section addresses the
problem of estimating the unknown parameter vector ��� from n vectors YYY =
(YYY ; . . . ; YYY ), where YYY = (Y ; Y ) is distributed according to an MuBGD
with parameter vector ���

The MLE of can be obtained by summing (17)–(19) and
replacing the value of in (18)

(20)

The MLEs of and are obtained by replacing by
in (16) and by maximizing the resulting log-likelihood

wrt and . This last maximization is
achieved by using a constrained ( and ) quasi-
Newton method, since an analytical expression of the log-like-
lihood gradient is available.4 Some elements regarding the nu-
merical evaluation of the Horn Function are detailed in Appen-
dices I and II. It is important to note that the MLE of differs
from in the general case.5 Finally, the MLE of the correlation
coefficient is deduced by functional invariance as

2) Performance: The properties of the ML estimator
can be easily derived from the properties of the univariate
gamma distribution . This estimator is obviously un-
biased, convergent and efficient. However, the performance of

and are more difficult to study. Of course, the MLE
is known to be asymptotically unbiased and asymptotically
efficient, under mild regularity conditions. Thus, the mean
square error (MSE) of the estimates can be approximated for
large data records by the Cramer–Rao lower bound (CRLB).
For unbiased estimators, the CRLB is obtained by inverting the
following Fisher information matrix

Thus, the computation of requires to determine the negative
expectations of second-order derivatives of wrt
and in (16). Closed-form expressions for the elements of are
difficult to obtain because of the term . In such situation,
it is very usual to approximate the expectations by using Monte
Carlo methods. This will provide interesting approximations of
the ML MSEs (see simulation results of Section V).

B. Inference Function for Margins (IFM)

1) Principles: IFM is a two-stage estimation method whose
main ideas can be found for instance in [14, Ch. 10] and are
summarized below in the context of MuBGDs.

• Estimate the unknown parameters and from the
marginal distributions of and . This estimation is con-
ducted by maximizing the marginal likelihoods
and wrt and , respectively.

• Estimate the parameter by maximizing the joint likeli-
hood wrt . Note that the parame-
ters and have been replaced in the joint likelihood
by their estimates resulting from the first stage of IFM.

4The negative log-likelihood function has a unique minimum with repect to
r in all pratical cases. The reader is invited to consult [13] for discussions and
simulations results.

5There is no closed-form expression for the MLE of m contrarily to m .
Indeed, there is some kind of dissymmetry between Y and Y inherent to the
proposed model (7). This dissymmetry will disappear in the method based on
the inference for margins studied in section B.

142



CHATELAIN et al.: CHANGE DETECTION IN MULTISENSOR SAR IMAGES USING BIVARIATE GAMMA DISTRIBUTIONS 253

The IFM procedure is often computationally simpler than the
ML method which estimates all the parameters simultaneously
from the joint likelihood. Indeed, a numerical optimization with
several parameters is much more time-consuming compared
with several optimizations with fewer parameters. The marginal
distributions of an MuBGD are univariate gamma distributions
with shape parameters and means , for . Thus,
the IFM estimators of are obtained as a solution of

where is the marginal log-likelihood function associated to the
univariate random variable , for , and is the joint
log-likelihood defined in (16). The IFM estimators of and

are classically obtained from the properties of the univariate
gamma distribution

(21)

The IFM estimator of is obtained by replacing and by
and in (16) and by minimizing the resulting log-likelihood

wrt . This last minimization is achieved by
using a constrained quasi-Newton method (with the constraint

), since an analytical expression of the log-likelihood
gradient is available.

Note that the ML method presented before requires to
optimize the log-likelihood wrt
and whereas the IFM method only requires to optimize

wrt a single variable . The optimization pro-
cedure is, therefore, much less time-consuming for IFM than
for the ML method. Note also that the estimator of is the
same for the ML and IFM methods. Finally, it is interesting to
point out that the joint likelihood is the product of univariate
gamma pdfs when . As a consequence, the ML and IFM
estimators are the same when .

2) Performance: Asymptotic properties of the IFM es-
timator can be derived from the set of inferences functions

under the usual regularity conditions for the MLE (the
interested reader is invited to consult [14] for more details).
In particular, the IFM estimator of denoted as is such
that converges in distribution to the normal
distribution , where the asymptotic covariance matrix
V is the inverse Godambe information matrix defined as

(22)

where

Straightforward computations yield the following expres-
sions for matrices and [15]:

where

• are the entries of the Fisher information matrix,
;

• and are the Fisher information associated with the
margins and , respectively;

•

The terms associated to MuBGDs are easily de-
rived by considering the univariate log-likelihoods
and

As explained in Section IV-A2, the Fisher information entries
do not have closed-form expressions. Consequently, these

terms have been computed by using numerical integration
(Simpson quadrature). Note that this method allows one to
control the approximation error.

C. Method of Moments

The estimators of derived in this paper will be
compared to the standard estimators based on the method of
moments

(23)

(24)

The asymptotic performance of the estimator
can be derived by imitating the results

of [16] derived in the context of time series analysis. More
precisely, the moment estimator of can be rewritten as

where

contains
the appropriate first and second order empirical moments of

. By denoting as the
covariance matrix of the vector and the jacobian
of the function defined above, it can be shown that
the asymptotic covariance matrix of is

[16]. The determination of the covariance
matrix requires to know appropriate theoretical
moments of (up to the fourth order).
These moments can be determined by using the results of
Section III-C. The reader is invited to consult [6] for
more details regarding the asymptotic performance of the
moment estimator for MuBGDs.

V. SIMULATION RESULTS

Many simulations have been conducted to validate the
previous theoretical results. This section presents some ex-
periments obtained with a vector distributed
according to an MuBGD whose Laplace transform is (9).
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A. Generation of Synthetic Data

According to the definition given in Section III-C, a vector
distributed according to an MuBGD can be generated by

adding a random variable distributed according to a univariate
gamma distribution to a random vector distributed according
to an MoBGD. The generation of a vector whose Laplace
transform is (1) has been described in [6] and is summarized as
follows:

• simulate independent multivariate Gaussian vectors
of denoted as with means (0,0) and
the 2 2 covariance matrix with

;
• compute the th component of as

being the th component of
.

It is interesting to note that the generation of a random vector
distributed according to a multivariate gamma distribution is
straightforward here since is an integer (this assumption is
not a problem in practical applications since is the number of
looks of the SAR image). However, if would not be an in-
teger, the generation of the random vector could be achieved
by using an accept-reject procedure such as the one detailed in
[17, p. 51].

B. Estimation Performance

1) ML Method and Method of Moments: The first simu-
lations compare the performance of the estimators based on
the method of moments and the ML method as a function of
the sample size . Note that the possible values of corre-
spond to the numbers of pixels of squared windows of size

, where . These values are appropriate
to the change detection problem. The number of Monte Carlo
runs is 10 000 for all figures presented in this section. The other
parameters for this example are
(number of looks of the first image) and (number of looks
of the second image). Fig. 1(a)–(c) shows the MSEs of the esti-
mated normalized correlation coefficient for different values of

( and ). The losange curves corre-
spond to the estimator of moments whereas the triangle curves
correspond to the MLE. Fig. 1 shows the interest of the ML
method, which is much more efficient for this problem than the
method of moments, particularly for large values of the correla-
tion coefficient . Note that the theoretical asymptotic MSEs of
both estimators are also depicted (continuous lines). They are
clearly in good agreement with the estimated MSEs, even for
small values of . Finally, these figures show that “reliable” es-
timates of can be obtained for values of larger than 9 9,
i.e., even for relatively small window sizes.

Fig. 2(a) and (b) compares the MSEs of the estimated mean
obtained for the ML method and the method of moments for

two values of ( and ). Both estimators per-
form very similarly for this parameter, even if the difference is
slightly more noticeable for larger values of . Note that the es-
timators of obtained for the ML and moment methods are the
same. Thus, the corresponding MSEs have not been presented
here for brevity.

2) ML and IFM: This section compares the performance of
the ML and IFM estimators for the parameters and . Fig. 3
first shows the asymptotic performance of both estimators by
depicting the ratio of their asymptotic variances, referred to as

Fig. 1. Log MSEs versus logn for parameter r (q = 1; q = 2;m = 100;
and m = 100).

Fig. 2. Log MSEs versus logn for parameter m (q = 1; q = 2;m =
100; and m = 100).

Fig. 3. ARE (q = 1; q = 5;m = 1; and m = 1).

asymptotic ratio efficiency (ARE), as a function of . Fig. 3
shows that the ML and IFM estimators of the correlation coef-
ficient have very similar asymptotic variances when is not
too close from 1. This result is confirmed in Fig. 4, which shows
the MSEs of the estimated correlation coefficient obtained with
the ML and IFM methods for different values of the sample size

(the parameters for this simulation are
and ). Fig. 3 also shows that the asymp-

totic performance of the ML and IFM estimators for parameter
differ significantly when approaches 1. However, this is

not a major problem since the change detection algorithms pro-
posed in this paper will be based on only (see the next section).
Based on these results, the IFM method will be preferred to the
ML method since it involves much smaller computational cost.

C. Detection Performance

This section considers synthetic vectors
(coming from 762 292 synthetic images) distributed ac-
cording to MuBGDs with and , modeling the
presence and absence of changes, respectively. The correlation
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Fig. 4. Log MSEs versus logn for parameter r (r = 0:9; q = 1; q =
2;m = 100; and m = 100).

coefficient of each bivariate vector
(for ) is estimated locally from
pixels belonging to windows of size
centered around the pixel of coordinates in the two an-
alyzed images. The change detection problem in multisensor
SAR images is addressed by using the following decision rule:

(25)

where is a threshold depending on the probability of false
alarm (PFA) and is an estimator of the correlation coefficient
(obtained from the method of moments or the IFM method).
The performance of the change detection strategy (25) can be
defined by the two following probabilities [18, p. 34 ]:

Thus, a pair can be defined for each value of .
The curves representing as a function of are called re-
ceiver operating characteristics (ROCs) and are classically used
to assess detection performance [38, p. 38].

The ROCs for the change detection problem (25) are de-
picted in Fig. 5(a)–(c) for three representative values of
and two window sizes (9 9) and (21 21). The IFM esti-
mator clearly outperforms the moment estimator for these ex-
amples. Fig. 5(a) and (b) also shows that the detection perfor-
mance seems to decrease when increases, i.e., when the
difference between the numbers of looks of the two images in-
creases. In order to confirm this observation, we have derived
theoretical ROCs by using the asymptotic Gaussian distribution
for the estimated correlation coefficient (see Section IV-B2). In
this case, by denoting and the true values of the correlation
coefficient under hypotheses and , the following results
can be obtained:

where and are the asymptotic variances of the estimated
correlation coefficient under hypotheses and [calcu-
lated from the inverse Godambe information matrix defined in
(22)]. By denoting as the cumulative distribution function
of the Gaussian distribution , the following result is then
classically obtained:

(26)

Fig. 5. ROCs for synthetic data.

Fig. 6. P versus shape parameters q and q (P = 0:3; n = 1).

This result provides theoretical asymptotic expressions for the
ROCs associated to the detection problem (25) and allow us
to analyze detection performance as functions of the MuBGD
parameters. For instance, Fig. 6 shows as functions of
and for a given probability of false alarm . Fig. 6
clearly confirms that the detection performance is a decreasing
function of .

D. Change Detection in Real Images

This section first considers images acquired at different
dates around Gloucester (U.K.) before and during a flood (on
September 9, 2000 and October 21, 2000, respectively). The
1-look images as well as a mask indicating the pixels affected
by the flood are depicted in Fig. 7(a)–(c). The reference map
in Fig. 7(c) was obtained by photo-interpreters—who used the
same SAR images we are using—and a reference map built
from Landsat and SPOT data acquired one day after the radar
image. The original 1-look images have been transformed into
images with larger numbers of looks by replacing each pixel
by the average of pixels belonging to a given neighborhood.
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Fig. 7. ERS images of Gloucester before and after flood.

This section compares the performance of the following change
detectors.

• The ratio edge detector which has been intensively used for
SAR images [19], [20]. This detector mitigates the effects
of the multiplicative speckle noise by computing the ratio
of averages of pixel values belonging to neighborhoods of
the pixels under consideration.

• The correlation change detector, where in (25) has been
estimated with the moment estimator (referred to as “Cor-
relation Moment”).

• The correlation change detector, where in (25) has been
estimated with the IFM method for BGDs (referred to as
“Correlation IFM”).

The ROCs for this change detection problem are shown in
Fig. 8(a)–(c) for different window sizes (
and ). The numbers of looks for the two images
are and . The correlation IFM detector clearly
provides the best results.

The second set of experiments is related to a couple of
Radarsat images acquired before and after the eruption of the
Nyiragongo volcano which occurred in January 2002. The
Radarsat images are depicted in Fig. 9(a) (before eruption) and
(b) (after eruption). Note that some changes due to the eruption
can be clearly seen on the landing track for example. Fig. 9(c)
indicates the pixels of the image which have been affected by
the eruption (white pixels). The ROCs for this change detection
problem are shown in Fig. 10(a)–(c) for different window sizes
( and ). The numbers
of looks for the two images are and . The
correlation IFM detector provides better performance than the
conventional correlation moment detector in all cases. The ratio
edge detector also shows interesting detection performance
for this example because the volcano eruption has produced
significant changes in the pixel intensities. Note, however, that
the proposed correlation IFM detector gives better performance
for large PFAs. Even if these large PFA values are usually
considered as a bad result in classical detection problems, the

Fig. 8. ROCs for Gloucester images (q = 1; q = 5).

Fig. 9. Radarsat images of Nyiragongo before and after eruption.

reader has to bear in mind that when working with images,
simple postprocessing strategies can dramatically improve the
change detection performance. Indeed, when looking at detec-
tion maps, two types of false alarms can be observed: isolated
pixels and boundary pixels. For the first type of errors, a simple
median filter a morphological opening, gives very good results.
The second type of false alarm is due to the spatial extent
of the estimation windows, which over-detect at the output
boundaries of the change areas. This is not a main drawback in
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Fig. 10. ROCs for Nyiragongo images (q = 3; q = 6).

terms of change map production, since the change areas remain
the same and only the spatial resolution of the map is affected.

VI. CONCLUSION

This paper studied a new family of multivariate gamma
based distributions for multisensor SAR images referred to as
MuMGDs. Estimation algorithms based on the ML method,
the IFM principle and the methods of moments were studied
to estimate the parameters of these distributions. In particular,
the estimated correlation coefficient of MuMGDs showed
interesting properties for detecting changes in radar images
with different numbers of looks.

Being able to handle images with different numbers of looks
is very useful, not only when the images have been acquired by
different sensors, but also when both sensors have the same the-
oretical number of looks. Indeed, change detection algorithms
require precise image co-registration which is usually achieved
by image interpolation. Image interpolation and other image
preprocessing steps modify locally the equivalent number of
looks of the images. Therefore, even if the images have been
acquired by the same sensor in the same imaging mode, differ-
ences in the equivalent number of looks can be observed. The
algorithms presented in this paper could be used for detecting
changes in this kind of images. Of course, in the case where
the equivalent number of looks has to be estimated locally, an
assessment of the influence of the estimation errors in the final
MuMGD parameter estimation should be addressed. This point
is currently under investigation.

APPENDIX I
NUMERICAL EVALUATION OF THE HORN FUNCTION

Some series representation in terms of special functions are
useful to compute hypergeometric series of order two [21]. For
the Horn function defined in (13), the following expansion
is particularly useful:

where is the confluent hypergeometric series of order one,
i.e., . This confluent
hypergeometric series can be expressed as follows
[22]:

(27)

where is the cumulative distribution function of a uni-
variate gamma distribution with shape parameter and scale pa-
rameter 1. Note that the summation in (27) is finite since
is an integer. This yields the following expression of :

(28)

where the last summation is finite. Equation (28) pro-
vides a numerically stable way of evaluating for
large values of and . When is close to (0,0), the defi-
nition of in (13) will be preferred.

APPENDIX II
DERIVATIVES OF THE HORN FUNCTION

From the series representation of the function defined in
(13), the following results can be obtained:
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A New Statistical Similarity Measure for Change
Detection in Multitemporal SAR Images and Its

Extension to Multiscale Change Analysis
Jordi Inglada and Grégoire Mercier, Member, IEEE

Abstract—In this paper, we present a new similarity measure for
automatic change detection in multitemporal synthetic aperture
radar images. This measure is based on the evolution of the
local statistics of the image between two dates. The local statistics
are estimated by using a cumulant-based series expansion, which
approximates probability density functions in the neighborhood
of each pixel in the image. The degree of evolution of the local
statistics is measured using the Kullback–Leibler divergence. An
analytical expression for this detector is given, allowing a simple
computation which depends on the four first statistical moments
of the pixels inside the analysis window only. The proposed change
indicator is compared to the classical mean ratio detector and
also to other model-based approaches. Tests on the simulated and
real data show that our detector outperforms all the others. The
fast computation of the proposed detector allows a multiscale
approach in the change detection for operational use. The so-called
multiscale change profile (MCP) is introduced to yield change in-
formation on a wide range of scales and to better characterize the
appropriate scale. Two simple yet useful examples of applications
show that the MCP allows the design of change indicators, which
provide better results than a monoscale analysis.

Index Terms—Change detection, Edgeworth series expansion,
Kullback–Leibler (KL) divergence, multiscale change profile
(MCP), multitemporal synthetic aperture radar (SAR) images.

I. INTRODUCTION

R EMOTE-SENSING imagery is a precious tool for rapid-
mapping applications. In this context, one of the main

uses of remote sensing is the detection of changes occurring
after a natural or anthropic disaster. Since they are abrupt and
seldom predictable, these events cannot be well temporally
sampled—in the Shannon sense—by the polar orbit satellites,
which provide the medium, high, and very high resolution
imagery needed for an accurate analysis of the land cover.
Therefore, rapid mapping is often produced by detecting the
changes between an acquisition after the event and available
archive data.

This change-detection procedure is made difficult due to the
time constraints imposed by the emergency context. Indeed, the
first available acquisition after the event has to be used, what-
ever its modality, which is more likely to be a radar image, due
to weather and daylight constraints.

Manuscript received February 16, 2006; revised December 1, 2006.
J. Inglada is with the Centre National d’Études Spatiales, 31401 Toulouse,

France.
G. Mercier is with the École Nationale Supérieure des Télécommunications
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The kind of changes produced by the event of interest are
often difficult to model. The same kind of event—a flood—can
have different signatures, depending on where it happens—
high-density built-up areas, agricultural areas, etc.—and on the
characteristics of the sensor. Also, the changes of interest are
all mixed up with normal changes, which can be the majority if
the time gap between the two acquisitions is too long.

All these issues present us with a very difficult problem:
detecting abrupt unmodeled transitions in a temporal series with
only two dates.1

From this position of the problem, one can make the straight-
forward deduction that pixelwise comparison between the two
images will not be robust enough.

In the case of radar acquisitions, the standard detector is
based on the ratio of local means [3]. This detector is robust
to speckle noise, but it is limited to the comparison of first-
order statistics. The classical model for synthetic aperture radar
(SAR) intensity introduced by Ulaby et al. [4] assumes that the
texture is a zero-mean multiplicative contribution. Therefore,
changes taking place at the texture level, which preserve the
mean value, will not be detected by the mean-ratio detector
(MRD). One can, thus, assume a miss-detection behavior of
the detectors using only the mean pixel values. This remark
invites a more accurate analysis of the local statistics of the
images to be compared. Bujor et al. [5] did a very interesting
work by analyzing the interest of higher order statistics for
change detection in SAR images. They concluded that the ratio
of means was useful for step changes and that the second- and
third-order log-cumulants were useful for progressive changes
appearing in consecutive images in multitemporal series. Since
higher order statistics seem to be helpful, one may want to
compare the local probability density functions (pdfs) of the
neighborhood of the homologous pixels of the pair of images
used for the change detection.

Of course, this assumes that the pdfs are known and that there
exists a robust way to compare them. The estimation of pdfs
can be made with different approaches, but the straightforward
histogram method should be avoided due to the need of a high
number of samples for the estimation. Indeed, small analysis
window sizes are required to yield high-resolution change
maps. In this paper, we will present several approaches for this
estimation by using only a small number of samples for the
local statistics estimation, up to the fourth order.

1In the case where a sequence of several images is to be processed, the
approaches presented in [1] and [2] may be applied.

0196-2892/$25.00 © 2007 IEEE
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Once the pdfs are estimated, their comparison can also be
performed using different criteria. Information theory shows
that a good measure is the Kullback–Leibler (KL) divergence,
which is also called information gain. We will use a symmet-
rical version of this measure and show that it is superior to the
classical detector when the pdfs are correctly estimated.

Therefore, these measures will be based on the comparison
of local neighborhoods where an analysis window for the
computation of the local estimation of probabilities is used. The
problem, which arises here, is the one of choice of the window
size. Since we are facing unmodeled changes, we cannot choose
the window size to fit the size of the expected changes. An in-
appropriate window size can produce miss- and overdetections:
1) When using a small window for a correlation analysis, no
detection will be performed in a homogeneous area, which was
globally changed to another homogeneous area, and 2) on the
contrary, when using a larger window size, change areas have to
be of larger size or strong in intensity (relative to the measure)
to be detected. In these cases, it will produce a coarse-resolution
change map. One way to overcome this problem is by applying
a multiscale change-detection analysis.

Scale is to be understood in its geographic meaning, which
is the spatial extent of the study area. It does not refer to the
cartographic meaning of scale (the larger the scale, the more
detailed is the information [6]; for an interesting discussion on
scale issues in remote sensing, see [7]).

Image-processing techniques for multiscale analysis often
use the cartographic meaning and apply low-pass filtering
and possibly subsampling. For change-detection analysis, this
filtering and subsampling can be justified in the case where
the images are not perfectly registered [8]. In other cases,
we think that it is better to use all the available information,
that is, maximizing the number of available samples by using
increasing window sizes. Nevertheless, pyramidal multiscale
decompositions can also be useful in the case of phenomena
characterizations (see, for example, [9]).

Therefore, the main point of the problem is how to choose
the largest window size that robustly detects the changes, but
which is small enough to preserve the resolution of the final
map without missdetections.

We propose to use multiscale change profiles (MCP), which
are defined as the change indicator for each pixel in the image
as a function of the analyzing window size. The computation
of the change detection for each window size can be very time-
consuming. We present here a method for the computation of
these profiles, which allows the change indicator at scale n
to be computed from the value obtained at scale n − 1 plus
a correction term which takes into account the addition of
new samples only. Analytical expressions are given for three
different change indicators. This paper proposes the following
three main contributions:

1) an information-theory-based similarity measure which
uses full local statistics;

2) the use of cumulant-based series expansions of similarity
measures, which allow a robust and fast computation by
using a small number of samples;

3) the concept of MCP and its fast implementation using
recurrence evaluations.

Fig. 1. Block diagram for a classical change-detection processing chain.

This paper is organized as follows. Section II presents the prob-
lem formulation; Section III introduces the measures used for
the production of a change image; in Section IV, we introduce
the concept of MCP and present the mathematical formulation,
allowing its optimized computation; Sections V and VI present
the results obtained on simulated and real data, respectively, and
Section VII concludes this paper and proposes some directions
for future work.

II. PROBLEM FORMULATION

Let us consider two coregistered SAR intensity images IX

and IY acquired at two different dates tX and tY , respectively.
Our objective is to produce a map representing the changes
occurring in the scene between tX and tY . The final goal
of a change-detection analysis is to produce a binary map
corresponding to the two classes: change and no change. The
problem can be decomposed into two steps: the generation of a
change image and the thresholding of the change image in order
to produce the binary change map. Fig. 1 shows a block diagram
describing a classical change-detection processing chain.

The overall performance of the detection system will depend
on both the quality of the change image and the quality of
the thresholding. In this paper, we choose to focus on the
generation of an indicator of change for each pixel in the
image. For interesting approaches in the field of unsupervised
change image thresholding, the reader can refer to the works of
Bruzzone and Prieto [10], [11], Bruzzone and Serpico [12], and
Bazi et al. [13]. The reader may note that some of these ap-
proaches need a statistical modeling of the detectors’ response,
which is not presented here.

The change indicator can also be useful by itself. Indeed,
often the end user of a change map wants not only the binary
information, given after thresholding, but also an indicator of
the intensity of the change and, eventually, a confidence level.
In order to evaluate the quality of a change image independently
of the choice of the thresholding algorithm, the evolution of
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the detection probability Pdet as a function of the false-alarm
probability Pfa may be evaluated in the case where a set of
constant thresholds is applied to the whole image. These are
the so-called receiver operating characteristics (ROC), and the
plots of Pdet(Pfa) are called the ROC plots.

III. DISTANCE BETWEEN PROBABILITY DENSITIES

The main difficulty in the multitemporal analysis of SAR
images is the presence of speckle noise. When moving away
from interferometric configurations, the speckle is different
from one image to the other, and it can induce a high number of
false alarms in the change-detection procedure. Because of the
multiplicative nature of speckle, the classical approach in SAR
remote sensing involves using the ratio of the local means in
the neighborhood of each pair of colocated pixels. The MRD is
usually implemented as the following normalized quantity:

rMRD = 1 − min

{
µX

µY
,
µY

µX

}
(1)

where µX and µY stand for the local mean values of the
images before and after the event of interest, respectively. The
logarithm of (1) may also be used. Nevertheless, this operation
does not modify the performance of the detector, in terms of
ROC, even if the contrast of the image of change indicator is
modified. However, the logarithm is used since it modifies the
initial pdf of the image of change indicator and then facilitates
the development of Bayesian thresholding approaches [13].

This detector assumes that a change in the scene will appear
as a modification of the local mean value of the image. If the
change preserves the mean value but modifies the local texture,
it will not be detected.

The change-detection algorithm proposed in this paper ex-
tends the MRD by analyzing the modification of the statistics
of each pixel’s neighborhood between the two acquisition dates.
A pixel will be considered as having changed if its statistical
distribution changes from one image to the other. In order to
quantify this change, a measure, which maps the two estimated
statistical distributions (one for each date at a colocated area)
into a scalar change index is required. Several approaches could
be taken into consideration: the mean-square error between the
two distributions, the norm of a vector of moments, etc. We
have chosen to use a measure derived from the information
theory called the KL divergence [14].

A. KL Divergence

Let PX and PY be two probability laws of the random
variables X and Y . The KL divergence from Y to X , in the
case where these two laws have the densities fX and fY , is
given by

K(Y |X) =

∫
log

fX(x)

fY (x)
fX(x)dx. (2)

The measure log(fX(x)/fY (x)) can be thought of as the infor-
mation on x for the discrimination between the hypothesis HX

and HY , if hypothesis HX is associated with the pdf fX(x) and

HY with fY (x). Therefore, the KL divergence K(Y |X) can
be understood as the mean information for the discrimination
between HX and HY per observation. This divergence appears
to be an appropriate tool to detect changes when we consider
that changes on the ground induce different shapes on the
local pdf.

Since the KL divergence can be understood as the entropy
of PX relative to PY , it is also called information gain. It can
easily be proven that K(Y |X) � 0; K(Y |X) vanishes only
when the two laws are identical. K(Y |X) can be used as a
measure of the divergence from PY to PX . This measure is not
symmetric as it stands: K(Y |X) �= K(X|Y ), but a symmetric
version may be defined by writing

D(X,Y ) = D(Y,X) = K(Y |X) + K(X|Y ) (3)

that will be called the KL distance.
In order to estimate the KL distance, the pdfs of the two

variables to be compared have to be known. As stated in the
Introduction, the processing of high-resolution change maps
requires analysis windows of small size, which makes impos-
sible the use of local histogram estimations. In the following
sections, we will introduce several approaches, which allow the
estimation of the pdfs by using a limited number of samples
only. This requires some a priori information on the data, which
can be introduced by using the models of local statistics.

B. Gaussian KL Detector (GKLD)

As shown in Section III, the classical detector of (1) uses
first-order statistics only. Yet, second-order statistics are often
used for SAR-image processing. For instance, many speckle-
reduction filters [15]–[17] are based on the contrast coefficient
σ2

X/µ2
X , that is, the ratio between the variance and the square

of the mean value. If the local statistics have to be compared up
to the second order, the local random variables X and Y may
be assumed to be normally distributed (i.e., of Gaussian law).
Then, the pdf of PX can be written as

fX(x) = G(x;µX , σX) =
1√

2πσ2
X

e
− (x−µX )2

2σ2
X . (4)

An analogous expression holds for fY (x).
Fig. 2(b) shows the Gaussian approximation of the probabil-

ity distribution of a small region of interest (ROI) [Fig. 2(a)]
extracted from a SAR image.

If this Gaussian model is used in (3), it yields the GKLD

rGKLD =
σ4

X + σ4
Y + (µX − µY )2(σ2

X + σ2
Y )

2σ2
Xσ2

Y

− 1. (5)

It can be seen that even in the case of identical mean values,
this detector is able to underline the shading of textures, which
is linked to the local variance evolution.

Nevertheless, the reader should note that the Gaussian model
should not be used, since SAR-intensity values are always
positive. However, this example has been given as a simple
case of a parametric model, which takes into account second-
order statistics. Since some Gaussianity may be introduced into
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Fig. 2. Approximation of a histogram, coming from a 50 × 50 ROI, using three different strategies. The Pearson fitting yields a Beta distribution of the first
type. (a) ROI extracted from a SAR image. (b) Gaussian fitting. (c) Pearson fitting: β1 = 2.51 × 10−6 and β2 = 1.87. (d) Edgeworth approximation.

the data when resampling and filtering the images during the
preprocessing step, the Gaussian model may nevertheless be
justified.

C. KLD Using the Pearson System

The drawback of the GKLD is that SAR-intensity statistics
are not normally distributed, and the use of a bad model can
induce bad performance of the detector, whatever the accuracy
of the parameter estimation is. In the absence of texture, the
radar intensity follows a Gamma distribution:

fX(x) =
1

Γ(L)

(
L

σX

)L

e
− Lx

σX xL−1. (6)

The Gamma distribution is characterized by the following
parameters: L is the number of looks, and σX is the square-root
of the SAR-intensity image. Γ(·) is the Gamma function.

In the presence of texture, the local statistics can deviate from
the Gamma distribution. For instance, if the texture is modeled
by a Gamma distribution with a shape parameter ν, then the
resulting intensity distribution follows a K-law [18]:

fX(x) =
2

x

(
Lνx

µX

)L+ν
1

Γ(L)Γ(ν)
Kν−L

(
2

(
Lνx

µX

)1/2
)

(7)

where K(·) is the modified Bessel function of the second kind
and µX is the mean of X .

More generally, it is now accepted that the statistics of
SAR images can be well modeled by the family of probability
distributions known as the Pearson system [19]. It is composed
of eight types of distributions, among which the Gaussian and
the Gamma distributions may be found. The Pearson system is
very easy to use since the type of distribution can be inferred
from the following parameters:

βX;1 =
µ2

X;3

µ3
X;2

βX;2 =
µX;4

µ2
X;2

where µX;i is the centered moment of order i of variable X .
That means that any distribution from the Pearson system can
be assessed from a given set of samples by computing the first
four statistical moments. Any distribution, therefore, can be
represented by a point on the (βX;1, βX;2) plane. For instance,
the Gaussian distribution is located at (βX;1, βX;2) = (0, 3),
and the Gamma distributions lie on the βX;2 = (3/2)βX;1 + 3
line. Details about the theory of the Pearson system can be
found in [20].

Fig. 2(c) shows an example of distribution estimation. The
Pearson approximation fits the data better than the Gaussian
one [Fig. 2(b)]. The example shown corresponds to a Beta
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distribution of the first type with parameters β1 = 2.51 × 10−6,
β2 = 1.87.

The Pearson-based KLD (PKLD) was originally introduced
in [21]. It does not have a unique analytic expression, since
eight different types of distribution may be held. Therefore,
64 different possibilities for the couples of pdf exist. Once the
couple of pdfs is identified, the detection can be performed by
numerical integration

rPKLD(X,Y ) =

∫ [
log

(
fX(x;βX;1, βX;2)

fY (x;βY ;1, βY ;2)

)

× fX(x;βX;1, βX;2)

+ log

(
fY (x;βY ;1, βY ;2)

fX(x;βX;1, βX;2)

)

× fY (x;βY ;1, βY ;2)

]
dx. (8)

The correct way in proceeding to use the Pearson system is to
choose a pdf using the estimated moments and, then, estimate
the parameters of the distribution by maximum likelihood.
While this can improve the results of the pdf estimation, the
effect is not noticeable in terms of the estimation of the change
indicator. This approach was not used in this paper in order to
reduce the computation cost.

The reader should note that, in the case of single-look
high-resolution SAR data (better than 10 m), other statisti-
cal models may be more appropriate, mainly on urban ar-
eas. Nicolas et al. have proposed a new model based on the
log-statistics and a set of pdfs coming from the Fisher sys-
tem of distributions [22], [23]. It has been applied to high-
resolution SAR images on dense urban areas with promising
results [24], [25].

D. Cumulant-Based KL Approximation

Instead of considering a parameterization of a given density,
or set of densities, it may be of interest to describe the shape
of the distribution. Such a description is based on quantitative
terms that may approximate the pdf itself. The cumulants
themselves do not provide such a pdf estimation directly but
are necessary to describe its shape: For example, third-order
(κ3) is linked to the symmetry (i.e., skewness), while the
fourth-order (κ4) is linked to the flatness (i.e., kurtosis). The
density is then estimated through a series expansion. In fact,
the cumulant generating function is used for such an estimation.
By definition, the cumulant generating function KX(·) of a
random variable X is defined by

KX(ω) = lnMX(ω) =
∑

n

κX;n
ωn

n!

where MX(·) is the moment-generating function defined by

MX(ω) =

∫
eωxfX(x)dx

=

∫ (
1 + ωx +

ω2

2
x2 + · · · +

)
fX(x)dx.

For the case of the four first-order cumulants, the following
expressions hold [26, p. 8]:

κX;1 =µX;1

κX;2 =µX;2 − µ2
X;1

κX;3 =µX;3 − 3µX;2µX;1 + 2µ3
X;1

κX;4 =µX;4 − 4µX;3µX;1 − 3µ2
X;2 + 12µX;2µ

2
X;1 − 6µ4

X;1.

(9)

Let us assume that the density to be approximated is not too
far [27] from a Gaussian pdf (denoted as GX to underline the
fact that it has the same mean and variance as X), that is, with
a shape similar to the Gaussian distribution. The difference
between KX(·) and KGX (·) can be written in terms of the
difference of the cumulants κX;n − κGX ;n. By inversion, the
density may be expressed by a formal Taylor-like series

fX(x) = GX(x) + c1
dGX

dx
+ c2

d2GX

dx2
+ · · · + .

Since a Gaussian density is used, it yields

fX(x) =

∞∑

r=0

crHr(x)GX(x)

where Hr(x) is known as the Chebyshev–Hermite polynomial
of order r [27]. When choosing a Gaussian law so that its
first and second cumulants agree with those of X , the number
of terms of the series expansion is greatly reduced. This is
the so-called Edgeworth series expansion. Its expression, when
truncated to order of six, is the following:

fX(x) =

(
1 +

κX′;3

6
H3(x) +

κX′;4

24
H4(x) +

κX′;5

120
H5(x)

+
κX′;6 + 10κ2

X′;3

720
H6(x)

)
GX(x). (10)

It can be thought of as a model of the form X = XG + X ′,
where XG is a random variable with Gaussian density with the
same mean and variance as X , and X ′ is a standardized version
of X [28] with

X ′ = (X − κX;1)κ
−1/2
X;2 .

Fig. 2(d) shows an example of such an approximation of a
histogram.

The Edgeworth series expansion of the two pdfs fX and fY

may be introduced into the KL divergence (2). It yields an
approximation of the KL divergence by Edgeworth series, trun-
cated at a given order. In [29], such an approximation has been
truncated to order of four by using the equality (fX/fY ) =
(fX/GX) (GX/GY ) (GY /fY ), where GX (respectively, GY )
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is a Gaussian density of the same mean and variance as fX

(respectively, fY ). Then

KLEdgeworth(X,Y )

=
1

12

κ2
X′;3

κ2
X;2

+
1

2

(
log

κY ;2

κX;2
− 1 +

1

κY ;2

(
κX;1 − κY ;1 + κ

1/2
X;2

)2
)

−
(
κY ′;3

a1

6
+ κY ′;4

a2

24
+ κ2

Y ′;3
a3

72

)

− 1

2

κ2
Y ′;3

36

(
c6 − 6

c4
κX;2

+ 9
c2

κ2
Y ;2

)

− 10
κX′;3κY ′;3(κX;1 − κY ;1)(κX;2 − κY ;2)

κ6
Y ;2

(11)

where

a1 = c3 − 3
α

κY ;2

a2 = c4 − 6
c2

κY ;2
+

3

κ2
Y ;2

a3 = c6 − 15
c4

κY ;2
+ 45

c2
κ2

Y ;2

− 15

κ3
Y ;2

c2 =α2 + β2

c3 =α3 + 3αβ2

c4 =α4 + 6α2β2 + 3β4

c6 =α6 + 15α4β2 + 45α2β4 + 15β6

α =
κX;1 − κY ;1

κY ;2

β =
κ

1/2
X;2

κY ;2
.

Finally, the cumulant-based KLD (CKLD) between two ob-
servations X and Y is written as

rCKLD = KLEdgeworth(X,Y ) + KLEdgeworth(Y,X). (12)

The reader should note the fact that, like for the Pearson-based
detector, despite the apparent complexity of the formulas, and
owing to (9), only the moments up to the order of four have to
be computed.

IV. MULTISCALE-CHANGE PROFILE

Scale plays a strategic role in image analysis and more
especially in change-detection applications. In Section I, it has
been shown how an inappropriate scale of analysis can produce
mis- or overdetections. Bovolo and Bruzzone [30] stress the
fact that the scale of analysis is a key parameter for better
discrimination between change and no-change areas. Such a
point of view is implemented by a wavelet transform of the log-
ratio estimated with a window of a user-defined size.

Instead of applying a multiscale analysis of the change
image, the purpose here is to produce a set of change indicators
estimated at various scales. We will call it MCP.

As stated in the Introduction, the multiscale term refers here
to the size of the analyzing window. The MCP will therefore
involve computing the change indicator for a pixel by using
neighborhoods of increasing sizes. The so-called profile cor-
responds to the sequence of change measures as a function
of scale. We will restrict our formulation to the case of the
CKLD. Given the fact that this detector needs the estimation
of the statistical moments of the samples inside the analyzing
window, we are interested in finding an approach which avoids
the computation from scratch of the moments at every scale.

A. Optimized Computation of the MCP

Let us consider the following problem: how to update the
moments when an (N + 1)th observation xN+1 is added to a set
of N observations {x1, x2, . . . , xN} already processed? When
considering raw moments of order r, the formulation comes
easily as

µ̃r,[N+1] =
N

N + 1
µ̃r,[N ] +

1

N + 1
xr

N+1.

µ̃r,[N ] (respectively, µ̃r,[N+1]) stands for the raw moment of or-
der r estimated with N samples (respectively, N + 1 samples).
Since the analyzing window may contain textured areas, the
mean value itself may be modified by the increase in the number
of samples. Therefore, by using simple binomial properties, it
can be shown that central moments may be characterized by

µ1,[N ] =
1

N
s1,[N ]

µr,[N ] =
1

N

r∑

=0

(
r

 

)
(−µ1,[N ])

r−s,[N ] (13)

where the notation sr,[N ] =
∑N

i=1 xr
i has been used.

Hence, when considering a new sample xN+1, each moment
may be updated directly by using updates of s1,[N+1] and,
then, sr,[N+1] for increasing values of order r. The Edgeworth
series is also updated by transforming moments to cumulants
[by using (9)] to be introduced in (10) and, then, in (11).

Fig. 3 shows an example of a pdf estimation on a homo-
geneous area [shown in Fig. 2(a)] when the window increases
from 9 × 9 to 17 × 17. In fact, the availability of updating the
estimation of the distance between distributions from windows
of any size without reprocessing the overall data is the most
interesting point for multiscale change-detection purposes. This
online multiscale moment estimation is the key for the opera-
tional use of the MCP concept.

For example, the computation of rCKLD with windows of
size ranging from 5 × 5 pixels to 51 × 51 pixels (22 different
window sizes) takes only 42% additional time with respect to
the computation of a single detection with a window of median
size of 29 × 29 pixels (300 versus 210 s for a 800 × 400 pixel
image).
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Fig. 3. Example of a pdf estimation update by increasing the sample set from
a window of size 9 × 9 to 17 × 17. The histogram has been estimated with a
17 × 17 window.

B. MCP Exploitation

The MCP computation produces a multichannel image (one
scale per channel) whose pixels have to be transformed into
scalar values in order to provide a change indicator. In order to
exploit the information available at all scales, two approaches
may be investigated. The first one consists in choosing the best
scale for each image pixel. The second one consists in fusing
the information available at all scales in order to provide a
single-change value.

The development of an optimal approach for the exploitation
of the MCP may be application-dependent. Indeed, multiscale
fusion approaches could be tuned to a particular type of
change—shape, nature, etc. In this section, two simple, yet use-
ful, choices will be proposed, which will yield an improvement
in comparison to the performance of single scale detection:
1) In order to choose the best scale, we will choose the one
which produces the highest KLD value. This assumes that this
scale is the one that is associated with the largest window inside
a homogeneous area with respect to the classes change and no
change. 2) The fusion of the multiscale information will be
performed by using the principal component analysis (PCA).
The first principal component of the MCP multichannel image
will be considered as the change indicator. This corresponds to
a linear combination of all scales which maximizes the contrast
of the final image.

V. EXPERIMENTS WITH THE SIMULATED DATA

A. Data-Set Description

Simulations have been performed to better understand the
behavior of the detectors relatively to a given kind of change
and a given size of the change area. Since this study focuses
on change detection on radar images, a speckle simulation is
performed from a map of ground reflectivity. The simulated
changes are applied on a small area, drawn as a circle, located
in the center of the initial image.

The simulation procedure is based on the radar-image-
formation mechanism. Each pixel is simulated with a given

Fig. 4. Simulated data set. (a) Before. (b) Mask. (c) After offset. (d) After
Gaussian. (e) After deterministic.

amplitude (coming from a SPOT near-infrared-band image,
normalized to [0, 1]) and a thousand phases coming from
independent uniform generations in [0, 2π] to characterize
elementary wave scatterers. Taking the square of the modulus
of each pixel yields a one-look intensity image. A four-look
intensity image is obtained by averaging and subsampling two
adjacent pixels along lines and rows.

Each simulation of an change is applied to the initial image
by using a change circle of a given size taken from {5, 10,
15, and 20}. Once the speckle simulation is performed (in-
dependently from one image to another), the speckle-changed
images are mosaicked on a 2 × 2 grid as shown on Fig. 4(b).

B. Simulation of Changes

Three kinds of change were considered.
1) Offset Change: The initial image is modified by applying

an offset value (i.e., a shift) to the inital data [Fig. 4(c)]. This is
a very simple type of change, which seldom occurs in reality,
but is useful to characterize the behavior of the detectors.

2) Gaussian Change: The initial image is modified by ap-
plying a zero-mean Gaussian additive noise to the initial data
[Fig. 4(d)]. This corresponds to a change in the state of the
surface—field and vegetation. This is the main type of change
that one can encounter in medium-resolution SAR images.
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Fig. 5. ROC plot comparison of the four detectors for a simulated change
consisting in an offset on reflectivity.

3) Deterministic Change: The initial image is modified by
pasting values copied from another area of the image itself
[Fig. 4(e)]. This type of change can occur when there is a land-
use change, anthropic activities, etc.

C. Results

1) Monoscale Detection: The results of the different detec-
tors for a fixed analysis window size are analyzed.

Fig. 5 shows the ROC plots for the case where the change
consists in a shift of the reflectivity value [Fig. 4(c)]. In this
case, all four detectors are able to detect the changes with high
accuracy. There is a slight difference in performance between
the pairs CKLD–GKLD and PKLD–MRD, but it is difficult
to infer the general behavior from this result. To draw a pre-
liminary conclusion, for a simple change such as a reflectivity
shift, the mean-value criterion is efficient enough for good
discrimination in the changes, even on speckled images.

Fig. 6 shows the ROC plots in the case of a Gaussian change.
The change is simulated by the addition of a Gaussian noise
to the reflectivity (before speckle simulation). In this case, the
mean value of the observed pixels remains approximately the
same. It is difficult for this kind of change to be observed by
a human operator. However, it is more likely to occur when
the modifications affect the surface without changing its nature.
In this case, even if all the detectors show bad performance
in comparison to the offset case, the MRD and the PKLD are
far below the GKLD and CKLD. The bad performance of the
MRD is easy to understand, since the zero-mean Gaussian noise
added to the reflectivity slightly changes the observed mean
value. For the PKLD, it can be argued that the type of law in
the Pearson system is not very different from the initial case,
and the main difference is seen through the mean value, thus
obtaining the same performance as the MRD. On the contrary,
the GKLD assumes a simpler model than the PKLD and is able
to take into account the mean and the variance modifications
together. Finally, the ability of the CKLD to fit many different
types of densities allows better detection for this difficult type
of change.

Fig. 6. ROC plot comparison of the four detectors for a simulated change
consisting in a Gaussian random modification of the reflectivity.

Fig. 7. ROC plot comparison of the four detectors for a simulated change
consisting in a deterministic modification of the reflectivity.

The third type of change is that of a texture change, which
can occur when there is a land-use change, anthropic activities,
etc. In this case, as can be inferred from Fig. 7, the mean value
of the regions may or may not change, and it is, therefore,
interesting to analyze the shape of the density. The Pearson
detector can be even worse than the MRD when the model does
not fit the data, which is the case in presence of mixtures.

2) Analysis of the MCPs: Some collected MCPs, obtained
by applying rCKLD of (12) to our data set, are analyzed.
Four different profiles are presented. They are extracted from
a change area of the simulated data set for the case of a
deterministic texture change and a radius of ten pixels. These
profiles are labeled as follows: Far for the case where the
analysis window is located 30 pixels from the center of the
change area; Outside border for a distance of 15 pixels; Inside
border for a distance of seven pixels; and Inside centered for a
distance of zero pixels. Fig. 8(a) presents a diagram explaining
how the profiles are extracted with respect to the change area,
and Fig. 8(b) presents the profiles themselves.
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Fig. 8. Typical examples of MCPs obtained from the Edgeworth approximation of the KL distance. (a) Positions of the profiles. (b) Gaussian fitting.

The Far profile shows low values for small window sizes, and
these values increase as the window size increases and it begins
to include pixels from the change area. The values decrease
for large window sizes, since the window stops including new
change pixels while including no-change pixels present in all
directions. The Outside border profile has a similar behavior,
but the CKLD values are high for small scales since the pixel
is nearer to the change area. The Inside border profile shows
higher values for the change indicator for small window sizes.
Finally, the Inside centered profile shows very high values of the
detector for a large interval of window sizes. It is worth noting
that the CKLD values are nearly the same for all detectors for
the largest window sizes, since at this scale, all detectors include
the same proportion of change and no-change pixels.

3) MCP Exploitation: In this section, the interest of the use
of the MCP is illustrated with respect to the selection of a fixed
scale of analysis (i.e., a fixed window size). The MCP allows the
best scale to be selected for each pixel location in the images.
Here, the maximum of the profile is used as a means to select
the appropriate scale.

The maximum of the MCP and two different scales, 5 × 5
and 17 × 17, are compared. The small window size is used in
order to detect small changes, but its main drawback is that the
false alarms may increase in the presence of noise. The larger
window size gives a lower false-alarm rate, since the noise is
averaged and, therefore, its effect is reduced. But small changes
can also be averaged, and therefore, the detection probability
may be lowered. Also, false alarms may be increased in the
neighborhood of the change areas.

The results of the comparison are presented in Figs. 9–11. As
expected, small windows were able to give high detection rates.
In the case of radiometric shift, the false-alarm rates are low for
a given detection probability, since the type of change is easily
detected by computing the mean value over a few pixels only.
However, when more complex changes occur (Figs. 10 and 11),
the false-alarm rate is very high at a given detection probability.
Another interesting effect can be observed in Figs. 9 and 11,
where for the large window sizes, the false-alarm rate increases
without an increase in the detection probability. This is due to
the fact that when the window is too large for the small changes
and not as large as the larger changes [see the mask in Fig. 4(b)],
the new detections induce false alarms only in the neighborhood
of the small changes.

Fig. 9. ROC plot comparison between MRD—2 scales, CKLD—2 scales,
and MCP—maximum of the profile, for a simulated change consisting in a
reflectivity offset.

Fig. 10. ROC plot comparison between MRD—2 scales, CKLD—2 scales,
and MCP—maximum of the profile, for a simulated change consisting in a
Gaussian random modification of the reflectivity.

In addition, the MCP gives results which do not suffer from
these drawbacks without the constraint of choosing a window
size without prior information on the size of the changes in the
images.
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Fig. 11. ROC plot comparison between MRD—2 scales, CKLD—2 scales,
and MCP—maximum of the profile, for a simulated change consisting in a
deterministic modification of the reflectivity.

VI. EXPERIMENTS WITH REAL DATA

This section shows an example of applications of these
algorithms to a real case. A pair of Radarsat images, acquired
before and after the eruption of the Nyiragongo volcano (De-
mocratic Republic of the Congo), which occurred in January
2002, were used. Fig. 12 shows the two images to be compared
and a change map produced using the ground measures. The
images have a ground resolution of 10 m and cover an area of
4 × 8 km. The images were orthorectified by IGN-F, the
French National Geographic Institute, to a UTM35S projec-
tion, which was the same as the one used for the reference
map. No filtering or calibration was applied to the data. The
16-bit to18-bit conversion was performed using a 3σ threshold-
ing followed by a linear intensity rescaling. It is worth noting
that the image resampling applied in the orthoregistration step
modifies the local statistics of the image. Indeed, the image re-
sampling implies the local-image interpolation, which is based
on approximate interpolators. A bicubic interpolation was used
in this case. This type of filter has a smoothing effect, which
depends on the local shift [31]. Because of these radiometric
artifacts introduced during the geometric preprocessing, the
theoretical models for SAR statistics may not hold locally. The
area at the bottom right-hand corner of the ground-truth mask
corresponds to an area where a severe misregistration exists
due to the lack of a proper digital terrain model. Finally, one
has to take into account the fact that the ground truth is not
perfect and that all results presented in this section should be
analyzed rather in a relative manner—one detector with respect
to another—rather than in an absolute one—absolute value of
detection probabilities.

A. Change Indicator

The comparisons between the result coming from the clas-
sical image intensity ratio and the method proposed in this
paper are shown in Fig. 13. Fig. 14 gives the ROC plots using
the ground truth of Fig. 12(c). It shows that the use of KL
approximation by the Edgeworth series outperforms any other

Fig. 12. Data and ground truth for the Nyiragongo volcanic eruption in
January 2002. (a) Before. (b) After. (c) Mask.

methods such as model-based (Gaussian-based or Pearson-
based) KL distance, or the ratio measure. As stated in the
Introduction, a misdetection behavior of this detector can be
observed, because the detector uses the mean pixel values only.
It is interesting to underline the fact that the ratio criterion is
not always worse than the pdf-based criteria. In fact, a density
model has to fit the data in order to yield pertinent results.

For a detection probability below 0.3, it is more interesting
to use the ratio criterion instead of a model-based one (by
using Gaussian or Pearson assumption) in this example, even
if a better change detection could have been expected by using
Gaussian or Gamma laws coming from the local analysis of the
two Radarsat images.

This point confirms that it is more interesting, for operational
use, to consider a more flexible pdf approximation by using
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Fig. 13. Change detection. Comparison between the different change indica-
tors using the same window size (35 ×35 pixels). (a) Intensity ratio. (b) Pearson
KL. (c) Cumulant-based KL.

the Edgeworth series instead of a pdf parameterization. The
cumulant-based approximation may give equivalent results to
the Pearson-based approximation if the estimated cumulants
correspond to a pdf belonging to the Pearson system of dis-
tributions, even though it may be less appropriate in the case
of heavy-tailed distributions (single-look data). If cumulants of
orders three and four vanish, the Edgeworth series is equivalent
to a Gaussian model. If the variance of X and Y are equivalent,
the Edgeworth series yields the same behavior as the ratio
measure. However, when the local observations X and Y to
be compared do not fit an a priori model, the Edgeworth series
becomes a more suitable tool.

Fig. 15 draws the minimum distance of ROC curves to the
point (Pd = 1, Pfa = 0). It is an interesting point of view to

Fig. 14. ROC plots for the different detectors. The CKLD outperforms
all other detectors. The Pearson-based detector gives results identical to the
classical mean ratio. The Gaussian-based detector shows the worse behavior.

Fig. 15. Distance of ROC curves to the point (Pd = 1, Pfa = 0) for the
different detectors. The Pearson detector allows trivial thresholding but is very
sensitive. The cumulant-based threshold is less sensitive to threshold variations.

evaluate the threshold to be applied to obtain the best tradeoff
between detection and false alarms. The best value of the
threshold is to be found at the minimum of the curves.

Fig. 15 shows that this minimum is lower—and therefore,
more interesting—for the Edgeworth series than for the Pearson
measure or the ratio detector.

When no ground truth is available, the end-user has no
a priori knowledge to set the value of the threshold. In this case,
the Pearson measure seems to be better since a trivial value
of zero could be used (i.e., pixels with values greater to zero
may be considered as a change). Unfortunately, simulations
and comparisons with other sets of images have shown that
this trivial threshold is very sensitive to noise and fluctuations.
The same observations about the sensitivity hold for the ratio
measure. On the contrary, the cumulant-based measure takes its
minimum for a wider range of values. Therefore, a threshold
chosen a priori from the interval [40, 50] gives an almost
optimal change map for all cases.
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Fig. 16. Change detection results obtained with the MCP. (a) Maximum of the
MCP. (b) First PC of the MCP.

B. Multiscale Change Indicators

As stated in Section IV-B, our goal here is not to find the
optimal way of exploiting the MCP but to show only the interest
of the concept with simple examples. The results presented
here use an MCP with window sizes ranging from 29 × 29 to
51 × 51.

In order to select the appropriate analysis window for each
pixel in the image, we will choose the maximum of the MCP.
The resulting change image is shown in Fig. 16(a). Fig. 17(a)
presents the histogram of the sizes of the selected analysis
windows when using the maximum of the MCP. It is inter-
esting to observe that there is a high variability of window
sizes, meaning that no trivial choice exists, like for instance
choosing the largest window in order to increase the number
of samples. Nevertheless, two peaks may be observed in the
histogram. The first maximum gives the limit of the resolution
of the detector and corresponds to areas near the borders of
the change and no-change classes. The second one corresponds
to homogeneous areas where the window size could continue
increasing. Fig. 17(b) shows the map of the selected scales.
The histogram bounds of Fig. 17(a) are linearly mapped to the
minimum and maximum values of the image. It is interesting
to note that large windows are used inside the change and no-
change areas and that small window sizes are selected near the
boundaries of these areas.

The ROC plots of Fig. 18 show that this simple strategy
improves the results with respect to the case where the 35 × 35
window was used.

As an approach to multiscale fusion, we propose here to
use the first principal component of the stack of multiscale
detection images. The obtained change image is presented
in Fig. 16(b). The ROC plot of Fig. 18 shows that this ap-
proach also provides better performance than the monoscale
detector.

Fig. 17. Analysis of the selected scales using the maximum of the MCP.
(a) Histogram of the window sizes. (b) Map of selected scales.

VII. DISCUSSION AND CONCLUSION

In this paper, a new similarity measure between images has
been introduced in the context of multitemporal SAR image
change detection. This measure is based on the use of the
cumulant-based series expansion of the local-image statistics
combined with the KL divergence. The concept of MCP has
been developed, and a fast and efficient implementation has
been proposed. Finally, two simple approaches for the produc-
tion of the change images containing multiscale information
have been presented. The first one is based on the selection
of the scale which gives the highest change indicator, and the
second one uses the first principal component of the multiscale
change image stack. The proposed similarity measure has been
compared to the classical ratio of local means and also to other
KLDs, which use parametric models (Gaussian- or Pearson-
based). The experiments have been carried out on simulated and
real data for which a reference change map was available.

The proposed original cumulant-based detector has been
shown to have a more robust behavior than other detectors in
terms of ROCs. The two simple yet useful schemes for the
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Fig. 18. ROC plots for two possibilities of MCP exploitation: The maximum
and the first principal component. They outperform the CKLD for a fixed
window size of 35 × 35.

exploitation of the MCP provide better performance than the
monoscale detector.

The main advantages of the proposed approach are the fol-
lowing: Our detector needs only the computation of the first
four statistical moments and can deal with a great variety of
pdfs and the MCP provides change information over a wide
range of scales at very low computation cost.

Some improvements could be done in order to use this
approach with single-look images, where the heavy-tailed dis-
tributions may need other statistical models. The use of Gamma
distributions instead of Gaussian for the series expansion seems
to be a good starting point.

Some questions still remain open about the use of MCPs.
Indeed, it would be interesting to analyze if we could establish
a classification of the profiles and thereby derive useful infor-
mation, not only about the scale of the change but also about
its type. This task could be carried out by visual inspection,
but automatic clustering techniques, like for instance the self-
organizing map [32], could be used. The parametric modeling
of the profiles by projection on an orthogonal basis could be
envisaged.

Another issue remaining is the automatic thresholding of the
change images. Whether it is for the case of a single scale or
for the case of a multiscale analysis, the statistics of the change
indicators could be used in order to propose adaptive Bayesian
thresholding techniques, as done in [13].

Finally, direct classification of multiscale profiles by using
support vector machines seems an appropriate choice for the
production of binary-change maps in the case of supervised
analyses. This approach has successfully been applied to the
classification of hyperspectral images [33].

All these aspects will be studied in future work.
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Support Vector Reduction in SVM Algorithm for
Abrupt Change Detection in Remote Sensing
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and Jocelyn Chanussot, Senior Member, IEEE

Abstract—Satellite imagery classification using the support
vector machine (SVM) algorithm may be a time-consuming task.
This may lead to unacceptable performances for risk management
applications that are very time constrained. Hence, methods for
accelerating the SVM classification are mandatory. From the SVM
decision function, it can be noted that the classification time is
proportional to the number of support vectors (SVs) in the nonlin-
ear case. In this letter, four different algorithms for reducing the
number of SVs are proposed. The algorithms have been tested in
the frame of a change detection application, which corresponds to
a change-versus-no-change classification problem, based on a set
of generic change criteria extracted from different combinations
of remote sensing imagery.

Index Terms—Image classification, image matching, image
processing, remote sensing.

I. INTRODUCTION

IN THE context of risk management and hazard assess-
ment using satellite imagery, high-performing change de-

tection algorithms are of great importance [1]. For this type
of application, change detection problems can be viewed as
a classification using two classes (change/no change). Due to
its multiple advantages, the support vector machine (SVM)
binary classification algorithm has been widely used for the
classification of satellite imagery [2]. In this letter, the SVM
algorithm is used in the context of building a generic change
detection algorithm. In order to achieve the goal of genericity,
a large amount of change indicators have been extracted from
the images and used as input in the SVMs, yielding high-
dimensionality input vectors. Despite the fact that, theoretically,
the SVM algorithm can handle such large data sets with high
dimensionality, in practice, the following two main problems
arise: 1) The computation time required for the convergence
of the optimization problem during the “learning” step of the
SVM algorithm is very high, and 2) the classification time
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increases in a polynomial fashion with the increase in the data
dimensionality [3].

This letter focuses on the decrease of the classification time.
In the SVM algorithm, the classification time is directly propor-
tional to the number of support vectors (SVs) in the nonlinear
case. Several methods for the SV reduction are proposed in
Section III. The reduction of the SVs may logically result in a
decrease in the classification accuracy; however, in the context
of risk management and hazard assessment, a slight decrease
in the classification accuracy can be tolerated for a gain in
classification time.

This letter is divided into the following sections. In
Section II, a brief introduction on the SVM binary classification
algorithm is presented. In Section III, the proposed techniques
for obtaining the reduced set of SVs are presented. The con-
ducted experiments and the results obtained using the different
methods are discussed in Section IV. Finally, the conclusions
are drawn in Section V.

II. SVMS

The SVMs are state-of-the-art large margin classifiers that
have gained much popularity within the image-processing com-
munity. The SVM is a learning-based binary classification
algorithm that is based on the concept of structural risk minimi-
zation [4]. This construction has shown to generally outperform
traditional learning machines like multilayer neural networks
that are based on the concept of empirical risk minimization
[5]. In this section, a brief review of the theory of this algorithm is
presented; for further details, the reader is invited to review [6].

Consider a set of learning data (xi, yi)
m
i=1, where xi ∈ �n

are the input feature vectors, and yi ∈ {−1,+1} are the set
of corresponding labels (i.e., classes). The SVM solution finds
ytest = f(xtest) for a new test vector xtest so that the prob-
ability of the error is minimal. The SVM decision for any
new vector xtest is obtained under the hypothesis that xtest is
issued from the same unknown probability density function that
produced the learning set xi.

If it is assumed that the two classes (i.e., the SVM is a binary
classifier) can be separated by a hyperplane and that no prior
information concerning the data distribution is available, then
the optimal hyperplane is the one which maximizes the margin
of separation between the two classes [6]. The optimal values of
w and b can be obtained by solving a constrained minimization
problem through the use of the Lagrange multipliers αi. The
decision function provided by the SVM can thus be put in the
following form:

f(xtest) = sgn

(
m∑

i=1

αiyiK(xtest, xi) + b

)
. (1)

1545-598X/$25.00 © 2009 IEEE
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The input feature vectors xi having a Lagrange multiplier αi

that is not equal to zero are considered as SVs, hence the
name SVMs. The kernel function K(·, ·) substitutes the scalar
product 〈·, ·〉 in order to allow the SVM to learn the nonlinear
classifiers as, for example, polynomial classifiers or radial basis
function (RBF) networks.

III. REDUCED SET OF SV

With the goal of providing a tradeoff between the clas-
sification accuracy and the computation time, four different
approaches are proposed in this section. The objective of these
approaches is the selection of a representative subset of the SVs.
These approaches are intended to select the SVs according to
their importance in order to obtain an acceptable approximation
of the SVM decision boundary.

A. Set Reduction by Lagrange Multipliers

The value of the Lagrange multipliers is a valid indicator of
the importance of a given vector. Using the information pro-
vided by the Lagrange multipliers, the first approach would be
to keep the SVs based on the value of the Lagrange multipliers.
Thus, the SVs with the highest unbounded Lagrange multipliers
(i.e., 0 < αi < C) will be used as the reduced set, and the rest
of the SVs will be eliminated. The size of the reduced set is
either specified a priori by a percentage of the entire set of
SVs or by specifying a threshold on the value of the αi to be
retained. If the percentage is higher than the available number
of unbounded SVs, the set is completed using the randomly
selected bounded SVs. Since this SV reduction procedure may
not respect the constraints of the SVM algorithm, namely,∑m

i=1 αiyi = 0, then a new learning step has to be applied. A
modified classification algorithm that takes into consideration
the SVM constraints is proposed as follows: 1) Perform a
first learning step; 2) choose a subset of the SVs according
to a maximum value of the αi with αi < C; 3) reperform the
learning step; and 4) classify.

The added relearning step launches the learning process only
on the chosen reduced set of vectors using the same kernel as
the one used in the first learning step. Intuitively, since these
vectors were already considered as SVs in the first learning step,
then the optimization procedure will separate them similarly
to the previous learning step, and thus, the role of the second
learning step will be simply to reattribute the values of the
αi in order to guarantee

∑m
i=1 αiyi = 0. In practice, however,

and due to the implementation issues of the SVM optimization,
it was noted that a very limited number of vectors (basically
two or three for a set of 600 SVs) are not considered as SVs
anymore. It is not likely to have an impact on the overall
classification performance since this quantity is negligible with
respect to the total number of SVs.

B. Set Reduction by Distance to Separating Surface

The decision function as presented in (1) can be used to build
a distance measure. The distance-to-hyperplane measure may
be defined by

fd(x) =

m∑

i=1

αiyiK(x, xi) + b.

The SV’s relative position, with respect to the separating
boundary, could be evaluated and then used as a criterion
in the SV reduction. The procedures are: 1) Perform a first
learning step; 2) choose a subset of the SVs according to a
maximum value of fd(xi) as in the aforementioned equation;
3) reperform the learning step; and 4) classify. As mentioned
earlier, the relearned step is used in order to recompute the αi.
As implemented in this algorithm, the SVs situated far away
from the separating hyperplane are considered as better suited
for set reduction since they provide a better generalization of the
separating hyperplane. The situation far from the hyperplane
limits the eventual overlap between the two classes and hence
is expected to provide a better separability between the two
classes.

C. Set Reduction by Mechanical Analogy

In [7], Schlkopf and Smola present the SVM classification
problem as a mechanical problem. The structure of the SVM
optimization problem is closely similar to the ones that typi-
cally arise in Lagrange’s formulation of mechanics. From this
point of view, it is possible to give a mechanical interpretation
to the optimal margin hyperplanes. Assume that each SV xi

exerts a perpendicular force of magnitude αi and direction
yi(w/‖w‖) on a solid plane sheet lying along the hyperplane.
The idea is to use this mechanical analogy to reduce the
number of SVs by merging the vectors using geometrical and
mechanical properties.

According to this point of view, two SVs x1 and x2 may
be replaced by a new vector xnew if its mean is set as the
mean of the two vectors. The difficult point would be to set
the value of αnew, which is associated to xnew. Considering
the mechanical analogy, the problem would be to identify the
direction of this force (i.e., the vector that is perpendicular to
the separating boundary w cannot be computed directly in the
nonlinear case). This problem could be avoided by merging
the two vectors directly in the feature space (i.e., the space
induced by the kernel function). Assuming that the system is
stable around the origin of the feature space, the αnew could be
obtained as follows:

αnewynewK(xnew, xnew) = y1α1K(x1, x1) + y2α2K(x2, x2).

Once again, in order to respect
∑m

i=1 αiyi = 0, the difference
(i.e., δ) between the computed αnew and the required one for
stability is computed by

αnewynew + δ = α1y1 + α2y2. (2)

Once the value of δ is obtained, it is distributed uniformly on
the SVs of the same class of xnew [according to the sign of
f(xnew) in (1)], which guarantees the SVM stability constraint.

An algorithm based on this mechanical analogy was de-
veloped. In order to identify the SVs that should be merged
together, a specific signature was computed for each vector, and
then, the vectors with similar signatures are merged.

The proposed algorithm is decomposed in the following
steps, which will be detailed further on: 1) Compute the
signatures of the different SVs (sn); 2) compute the dis-
tances between the different vectors according to their re-
spective signature [D(si, sj)] by evaluating the symmetrized
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Kullback–Leibler (KL) distance; and 3) define a threshold and
then merge the SVs having an interdistance that is less than the
defined threshold.

The signature sn of an SV xn is a vector of the m com-
ponents (m is the number of SVs) defined, component by
component, by the value of K(xi, xn), 1 � i � m

sn = (K(x1, xn),K(x2, xn), . . . ,K(xm, xn)) . (3)

The computation of the signature by using this procedure has
two reasons: 1) The interaction between the different vectors
using the kernel function is indicative of the distribution in the
feature space, and 2) the kernel values are already computed
during the learning phase, and hence, with proper storage, no
further computation will be required. Once the signature for
all the m vectors is computed, the symmetrized KL distance
is used to identify the vectors to be merged. The expression of
this distance was developed in [8] and is defined as follows:

1

R(s1, s2)
=

1

D(s1‖s2)
+

1

D(s2‖s1)
(4)

where D(s1‖s2) =
∫

s1(x) log(s1(x)/s2(x))dx. The reason
for using this type of distance instead of, for example, a simple
quadratic distance is its interesting properties. This type of dis-
tance measurement is based on the KL divergence [9] that con-
tains the discrimination information of the first hypothesis (i.e.,
represented by s1) on the second hypothesis (i.e., represented
by s2). The addition of such a rich measurement that already
contains information concerning the discrimination between the
two classes can enhance the classification performance in the
sense that it allows a first stage of clustering of the vectors.

The threshold definition procedure can be done manually or
automatically according to the required number of SVs at the
output of this reduction process.

This procedure has the advantage of not requiring a new
learning step like the other algorithms; however, the compu-
tation of the signatures and the distances is a time-consuming
task. Knowing that all these kernel evaluations have been
already computed during the initial learning phase, storing
these values greatly increases the speed of this algorithm. The
total number of operations required for this algorithm is then
(4m + 1) for the KL distance computation in addition to the six
operations required to evaluate the values of αnew and xnew. On
the other hand, merging two vectors saves the m operations for
the classification of a new test vector. Thus, if N > (4m + 7),
this type of reduced set SVM can be interesting, where N is the
total number of test data vectors to be classified.

D. Set Reduction by Optimization Problem

Following the same procedure as that proposed for the me-
chanical analogy approach, another strategy may be used to
evaluate αnew.

It takes its inspiration from the SVM optimization problem
in the sense that the solution of the SVM optimization problem
using the new vector is equal to the solution obtained using the
original vectors x1 and x2. Once the values of ynew and xnew

are specified, the αnew of the new SV xnew can be computed in
order to replace the two SVs αi1 and αi2 . αnew can be obtained

as follows (note that this computation can be extended to merge
any number of vectors):

αnew =
αi1 + αi2 − 1

2 (Ti1 + Ti2 + Ti1;i2)

1 − 1
2

m∑
i=1

i�=i1,i2

αiyiynewK(xi, xnew)

where

Ti1;i2 = 2αi1αi2yi1yi2K(xi1 , xi2), for i = i1 or i2

Ti =

m∑

j=1
j �=i1i2

αjαiyjyiK(xi, xj).

The number of operations required to compute αnew from the
merging of the two vectors is (7m − 6); this includes the com-
putation of the KL distance to identify the vectors to be merged.
Thus, this type of reduction is interesting when N > (7m − 6),
where N is the number of data vectors to be classified. When
three vectors are merged using this technique, the reduction is
interesting when N > (6m − 2); thus, the procedure becomes
more interesting when the number of vectors to be merged
increases.

IV. EXPERIMENTS

The proposed SV reduction algorithms were tested on three
data sets. The first is the Goma data set that is composed of
a pair of synthetic aperture radar images that were obtained
before/after the Nyiragongo volcanic eruption in eastern Congo
in 2002. The second set is composed of a pair of optical
Satellite Pour l’Observation de la Terre images that were ob-
tained before/after the earthquake that hit the Algerian city of
Boumerdes.

Several features were computed, namely, difference, ratio,
ratio of means, ratio of medians, correlation, mean squares,
KL distance, mutual information, cardinality match, gradient
difference, entropy, and energy. Along with the original images,
these images were used to form the input vectors for the SVM
algorithm, with each feature representing one component of the
vector; this yields vectors of size 14.

For testing purposes, a soft margin SVM was used, with
C = 1. An RBF kernel was used, with γ = 0.5 (i.e., it should be
noted that the exact values of the parameters are of no interest
in our case since we are only interested in obtaining infor-
mation concerning the overall behavior of algorithms that are
independent of these parameters). Ten different full iterations
were performed on the test data. A single iteration is composed
of the following steps: 1) Choose a random set of learning
vectors (consisting 1% of the total number of available testing
vectors); 2) perform the learning phase of the SVM algorithm
in order to obtain the original SV set; 3) reduce the number
of SVs by following the different algorithms (for the algorithm
in Section III-A, this means 10% reduction with respect to the
original set’s size, whereas for the remaining three algorithms,
this means increase of the threshold by 10% of the maximum
distance according to the specified criteria); 4) perform the
SVM classification using the new sets (four new sets following
the four proposed algorithms) of SVs; and 5) restart from step 3
until the new SV set’s size is only 10% of the original SV set.
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Fig. 1. Classification accuracy versus percentage (divided by ten) of the set’s
size reduction with respect to the original set’s size using the reduced set
algorithm of Section III-A applied on the different data sets. (a) Goma data
set. (b) Boumerdes data set.

Note that, in the following figures, the green line is a sim-
ple connection between the mean values. This green line is
intended to show the overall behavior of the different functions.

A. Set Reduction by Lagrange Multipliers

Fig. 1 shows the classification error using the reduced set as
a function of the total number of SVs applied on the different
testing data sets. Hence, the x-axis represents the percentage of
SVs that was removed (×10). In the case shown in Fig. 1(a), the
classification accuracy is almost constant with the removal of
the SVs. However, due to the large variance of the classification
error, following this method may not be robust to reduce the set
from the Goma data.

In the case shown in Fig. 1(b), the evolution is convenient
in the sense that the classification accuracy decreases with the
removal of the SVs. Thus, it offers a tradeoff between the
classification accuracy and the classification time (through
the reduction of the number of SVs). However, when removing
a large number of SVs (i.e., higher than 70%), the variance of
the classification accuracy is very high, showing that the results
are more and more noisy.

B. Set Reduction by Distance to Separating Surface

Fig. 2 shows the results obtained for the algorithm using the
distance-to-hyperplane criteria.

From Fig. 2(a), the results show that the classification accu-
racy has a large variance with respect to the removal of the SVs.
On the other hand, the mean values show that this technique
can be used to provide a tradeoff between the classification
accuracy and the classification time since the overall accuracy
decreases with the decrease of the number of SVs.

When tested on the Boumerdes data set as shown in Fig. 2(b),
this approach provides irregular results, where the classification
accuracy seems to be independent of the number of SVs.

Fig. 2. Classification accuracy versus percentage (divided by ten) of the
maximum distance using the reduced set algorithm defined in Section III-B.
(a) Goma data set. (b) Boumerdes data set.

Fig. 3. Classification accuracy versus merging step using the algorithm of
Section III-C. (a) Goma data set. (b) Boumerdes data set.

C. Set Reduction by Mechanical Analogy

Fig. 3 shows the results obtained using the algorithm defined
in Section III-C. It can be noticed that the error’s mean and
variance increase with the number of merged vectors. As the
number of SVs decreases, the separating surface becomes an
approximation of the original surface and thus provides a lower
classification accuracy. This shows that the reduced set using
this technique can provide a tradeoff between the classification
accuracy and the classification time through the reduction of
the SVs.

Despite a large variance of the classification accuracy, the
reduced set using the mechanical analogy provides adequate
results when applied to the Goma data set. As can be seen
in Fig. 3(a), the classification accuracy slightly decreases with
the decrease of the number of SVs. This is maintained until
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Fig. 4. Classification accuracy versus the merging step using the optimization
problem algorithm. (a) Goma data set. (b) Boumerdes data set.

a very large number of SVs are removed (80%), where the
classification result becomes unreliable due to the lack of
representativeness of the remaining SVs.

Fig. 3(b) shows the result obtained when the algorithm is
applied on the Boumerdes data set. It can be noted that the
algorithm provides reasonable results in terms of the variance of
the classification accuracy as well as the accuracy with respect
to the number of SVs that remains constant until 70% of the
SVs are removed.

D. Set Reduction by Optimization Problem

Fig. 4 shows the results obtained using the algorithm defined
in Section III-D. From these results, it can be shown that the
mean error increases with the decrease of the number of SVs.
However, the variance value remains high independently from
the number of SVs.

Fig. 4(a) shows the results of the application of the algorithm
on the Goma data set. Despite a large variance of the classifi-
cation accuracy, the algorithm provides good results, where the
mean classification accuracy is being maintained at a relatively
constant level with the removal of the SVs.

Similar to the tests on the Goma data set are the tests on
the Boumerdes data set. Fig. 4(b) shows that the algorithm is
capable of preserving the classification accuracy despite the
removal of the SVs. Hence, the obtained approximation of the
separating hyperplane is satisfactory.

After the inspection of the different obtained results, it
can be observed that, in terms of classification accuracy, the
mechanical-analogy-based algorithm provides the best results.
The algorithm using the optimization problem is also efficient
but suffers from the following two drawbacks: 1) high com-
putational cost during the merging phase and 2) high error
variance independently from the number of available SVs. The
algorithms using the distance to the hyperplane and the direct
filtering of the Lagrange multipliers provide irregular results,
probably due to the relearn step that could change the shape of
the separating hyperplane.

TABLE I
AMOUNT OF REDUCTION OPPOSED TO THE AVERAGE CLASSIFICATION

TIME (IN CPU TIME) FOR THE DIFFERENT SET REDUCTION TECHNIQUES

E. Classification Time

In this section, a comparison between the different methods
is provided in terms of computational time. Table I shows the
amount of reduction opposed to the average classification time

As can be seen from these results, despite the computational
cost added for the merging schemes represented by the op-
timization problem or the mechanical analogy set reduction
techniques, the computation time reduction as proposed in these
methods remains interesting. Note, however, that the computa-
tion time required for the filtering techniques (i.e., represented
by the Lagrange multiplier set reduction and the distance-to-
hyperplane set reduction techniques) has a significantly less
computation time, but, as shown earlier, this large decrease of
the computation time comes at the expense of the classification
accuracy.

V. CONCLUSION

In this letter, four different SV set reduction algorithms have
been proposed. The objective of these different algorithms is to
accelerate the classification process for a generic SVM-based
change detection algorithm in the context of risk management
in order to respect crucial operational time constraints. Since
the classification time is directly proportional to the number
of SVs in the nonlinear case, the adopted strategy was to
obtain a reduced set of the initial SVs. It was noted that the
algorithms using the mechanical analogy (Section III-C) and
the optimization problem (Section III-D) show good perfor-
mances. The algorithm using the mechanical analogy provides
the best results since it overperforms the algorithm using the
optimization problem both in required computation and in the
classification accuracy.
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Abstract

With the advent of Earth Observation satellite sensors producing images in the visible wavelengths with resolutions better than
5 m, it is now possible to recognize man-made objects which were not visible at lower resolutions. Because of the size and the
increasing quantity of remote sensing images, tools are needed for computer aided interpretation.

In this work we present an image processing system for the detection and recognition of man-made objects in high resolution
optical remote sensing images. Detection is understood here as finding a small rectangular area in the image containing an object.
Recognition is the attribution of a class label. These algorithms are based on learning methods and on an example data base which
contains eleven classes of objects. The examples (more that 150 for each class) have been manually extracted from SPOT 5 THR
images (2.5 m resolution).

In order to build a system which is independent of the type of object to be recognized, we have used a supervised learning
approach based on support vector machines. The system learns a generic model for each class of objects by using a geometric
characterization of the examples in the data base.

The main novelty of this paper is the use of a high number of geometric image features which allows to characterise several
classes of objects with different geometric properties using a supervised learning approach. The results show the possibility of
discrimination of several classes of objects with classification rates higher than 80%.
© 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.

Keywords: Object recognition; Man-made objects; Support vector machines; Geometrical moments

1. Introduction

Earth observation images with resolutions better than
5 m allow the visual recognition of man-made objects of
cartographic interest. Sensors with resolutions close to
1 m or better allow a better discrimination of this kind of

objects, but they usually have swath widths which are
too small (less than 20 km) for mass production of maps
used in town and country planning. Therefore, sensors
such as SPOT 5 which combine a high resolution
(2.5 m) and a wide swath (60 km) increase the interest of
the use of satellite images in this application field.

Satellite data allow the possibility of making rapid
mapping in the case of natural hazards, for instance. This
kind of application is submitted to strong time constraints.
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However, the exploitation images of such a large size
containing a high density of information is time-
consuming and also very difficult to analyze by a photo-
interpreter. Indeed, more than 400 analysis screens are
needed for one scene. We aim at providing photo-
interpreters with tools which help them in their visual
analysis task. From the user point of view, it is interesting
to have a tool which is able to point out where in thewhole
image a particular kind of object is present, eventually
giving some kind of confidence ratio.

The main goal of this paper is to investigate the
possibility of recognising objects in high resolution
remote sensing images using a generic approach, that is,
an approach which is not object dependent.

One of the main difficulties of image processing
tasks when moving from images with resolutions
coarser than 10 m to metric resolution ones, is being
able to deal with the high complexity of the image
content. This high complexity is mainly due to the fact
that, from a user point of view, the elements of interest
are not only individual pixels or surfaces, but complex,
structured objects.

While the land cover analysis of medium and low
resolution images can be addressed with a pixel-wise
approach, the specificity of high resolution images is
that we are interested in objects that can only be defined
by their shape and their neighborhood. Therefore, it is
difficult to implement generic image processing systems
which are based on the classical two-step – feature
extraction plus classification – approach.

On the other hand, manipulation of high level
concepts with rule-based systems seems to loose the
genericity of the former approach. Indeed, for the object
recognition problem, one could take the approach of
manually defining a geometric template for each object
and try to match it in the image. Unfortunately, the high
variability inside the different classes of objects makes
this approach difficult to exploit.

The main problem in our domain is the one of
recognising classes of objects instead of specific objects.
While the detection and recognition of objects using
specific approaches – tuned to the class of object to be
extracted – has been dealt with for a long time in
computer vision (especially in the military), little work
has been published about the detection and recognition
of classes of objects in remote sensing images with
generic approaches — not specific to a particular class
of object.

For instance, the literature about automatic road
extraction proposes methods where the roads are
modeled as a network of intersections and links between
the intersections Baumgartner et al. (1999), or extracted

using explicitly formulated scale-dependent models
Hinz and Baumgartner (2003). The review work
presented in Mena (2003) lists a high number of
methods, but they are all specific to roads or networks.
The object extraction from remote sensing images
literature also presents a large variety of methods for
building extraction, but, again, they are specific to this
class of objects. Many methods use stereo image pairs
Fraser et al. (2002); Gülch et al. (1998). Other methods
need important a priori knowledge about the surround-
ing of a building Gerke et al. (2001).

Related works dealing with the problem of informa-
tion retrieval from remote sensing image archives exist,
Datcu et al. (1998, 2003), Schroeder et al. (1998, 2000),
Dell'Acqua and Gamba (2001), Daschiel and Datcu
(2005); and should inspire our approach. Indeed, these
works show that the use of relevant features and a
classification in a feature space allow the retrieval of
relevant information for a high-level semantics defined
by a user by means of a small set of examples.

However, the problem of information retrieval from
large data bases has different constraints than the
problem of object recognition in a single image. Indeed,
the so-called image mining systems work with hundreds
to thousands of images which need to be indexed in a
very smart way in order to permit a short response time
to the user which interacts in real time with the system.
Since each user's query may be different, a great effort
has to be made in order to build a system which is able to
link the user semantics with the low-level image
features. On the other hand, all the possible images are
known to the system – thus all the events of the
probability space –, so the use of Bayesian learning is
the most suited and elegant way to proceed. As far as we
know, these systems do not try to retrieve composite
objects, but only classes which can be defined by
radiometric properties in a pixel-wise approach.

In the object recognition problem that we mean to
solve, only a few examples are available to train the
system because of the high cost of example data base
construction. Furthermore, each image to process is a
new image to the system, so the solution of finding the
scene in the data base which best explains the observed
data, Datcu et al. (1998), is not suited to our problem.

The goal of this work is to investigate the possibility
of automatically detecting and recognising objects in
high resolution remote sensing images. Detection is
understood as finding a small rectangular area in the
image containing the object. Recognition is the
attribution of a class label to the detected object. The
object recognition task can be performed after a
detection step. Another possible approach is to apply
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the recognition algorithms to every possible position of
an analysing window within the image. While this
second approach is less prone to misdetections, it is
computationally expensive and should be avoided in
operational systems. Our solution is based in a quick
pre-processing step which aims to detect the areas where
there may potentially be objects of interest. This is
achieved by a pre-segmentation of a low resolution
version of the image. This segmentation is based on
visual perception models, Thorpe et al. (2001). This is a
critical step of any recognition system but the details of
the pre-processing task are out of the scope of this paper.
Assuming that this pre-processing step is available, we
can proceed to a sequential scan of the interest areas and
directly apply the recognition approach presented in this
paper. A robust recognition algorithm should be
invariant to scale, rotation and illumination. This will
limit the use of object appearance models, Pope and
Lowe (1996), Hamdan et al. (2001). Another popular
approach is template matching approach, Veltkamp and
Hagedoorn (1999), but the difficulty here is finding the
correct templates which are able to deal with intra-class
variability. In order to cope with this difficulty, we can
adopt a supervised learning approach, that is, we will
make the system learn from an example data base. From
this example data base, a model for each class of objects
can be automatically obtained. The system will therefore
learn to classify image patches containing the object in
the center. This constraint imposed to the learning step
will allow a precise localisation of the detected objects
when performing the image scanning in the detection
and recognition phase. That means that for objects larger
that the analysing window, multiple detections will be
observed, each one for each window position.

The most popular approach for building object models
from an example data base is principal component
analysis, PCA, which has led to the eigenfaces approach,
Turk and Pentland (1991), Turk (2001): one assumes that
the set of pixels of each example in the data base is a
random vector and the principal component analysis is
performed in order to obtain a set of eigenvectors (the
eigenfaces) which are used as a decomposition basis.
Unfortunately, this approach is very constraining on the
characteristics of the data base in terms of pose and
illumination. In the case of data base constitution from
remote sensing images, these constraints are too high.
Variants of this approach have been presented as for
instance Borgne et al. (2004), where Independent
Component Analysis is used instead of PCA. Our
experiments with these approaches have been unsuccess-
ful. We think that the problem is that a small number of
examples with a high intra-class variability does not allow

to obtain relevant principal or independent components.
Indeed, this kind of analysis has given good results for
problems where the intra-class variability is low and
where the example data-base is built under controlled
conditions (illumination, etc.).

The remaining of this paper is organised as follows.
Section 2 describes the approach chosen for our system.
The geometrical characterization of objects is presented in
Section 3 and the feature vector classification approach
is described in Section 4. Section 5 presents the perfor-
mances of the system and discusses several possibil-
ities for its optimization. Finally, Section 6 presents our
conclusions.

2. The chosen approach

In order to implement a system which is generic with
respect to the types of objects to be recognised, we adopt a
generic feature extraction plus classification approach and
choose to use a high number of geometrical descriptors in
order to cope with the great diversity of possibilities for
the objects of interest. We are thus facing a problem of
supervised classification in a high dimensional feature
space and with only several tenths of examples available
per class. This limitation is a practical one in real
applications due to data availability problems and cost of
data base production. In order to overcome the curse of
dimensionality and, at the same time, preventing to loose
informationwith a dimensionality reduction approach, we
choose to use the support vector machines (SVM).

The goal of our recognition system is to correctly label
the image patches received as input. In order to do so each
image patch will be characterized by a description vector
which will be used in a supervised classification scheme.
An operational recognition system can then be built by
sequentially scanning full SPOT5 scenes.

In order to have a system which is robust to
illumination, spectral band and vegetation changes, we
will only use the geometry of the images. Indeed, the
kind of objects we are trying to detect are very well
defined by the spatial attributes of their edges and the
use of textures can introduce a source of variability –
illumination and seasonal effects for instance – that we
should avoid. The training phase will use a subset of the
example data base. Each image patch will be processed
in order to obtain a description vector (Section 3) which
will be fed to the learning engine (see Section 4). The
description vector will only contain geometry informa-
tion, but this fact is not taken into account by the
learning scheme.

In order to evaluate the performances of the system,
the image patches which were not used in the training
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phase will be used. Each image patch will be used to
compute a description vector which will be classified by
the system obtained during the training phase. The
performances of the system can then be evaluated by
computing confusion matrices.

The example data base has been built by CNES
photo-interpreters using SPOT5 THR images (panchro-
matic band with 2.5 m pixel sampling). We have defined
ten object classes: isolated buildings (IB), paths and
tracks (PT), crossroads (CR), bridges (BR), wide roads
(WR), highways (HW), round-abouts (RA), narrow
roads (NR), railways (RW), suburbs (SB).

While we are only interested in three of these classes
(IB, RA, BR), we have included the others in order to
better characterize the rejection class. We have also
created a supplementary class called OT (other) in order
to take into account the different possible landscapes.
The road classes are also very interesting, but they can
be extracted by algorithms which allow the reconstruc-
tion of the whole road network using contextual
approaches, Rochery et al. (2003), Stoica et al. (2004),
Baumgartner et al. (1999), Hinz and Baumgartner
(2003). For a complete list of references see the review
work of Mena (2003).

For each class, more than 150 examples have been
entered in the data base. Each example is a 100×100
pixels image patch with the object in the center of the
image. Since objects of different classes can appear in
the same image patch, the object centering is important
in order to lift ambiguities for the learning algorithms.
This will also hopefully produce detectors which have a
good localization (small footprint) so multiple detec-
tions for adjacent patches can be avoided when scanning
a large image. Each image patch is thus labelled as
belonging to the class of the object located in the center.
Fig. 1 shows one example for each class in the data base.
Additional examples have been created by applying
rotations and symmetries.

The SPOT5 scenes used for the data base have been
chosen over different areas in France (Toulouse,
Marseille and Strasbourg) and one area in the U.S.A
(San Diego, CA).

3. Geometrical characterization of objects

We aim at characterizing the objects by using
geometric information. In the remote sensing field, little
work exploiting the use of geometrical shape descriptors
for recognition exists. Dell'Acqua and Gamba (2001)
used the point diffusion technique, PDT, but this
approach is only efficient in the case where the object
of interest has well defined boundaries. In our case, one

object will be characterized by several sets of bound-
aries. The PDT is very useful for the comparison of
individual closed, deterministic shapes, but it does not
seem suited for our problem.

We need to be able to statistically compare sets of
shapes, but also other geometric descriptions. We will use
two kinds of features: region boundaries and alignments.

Alignments (that is edges and lines) are extracted
using the Gestalt approach proposed by Desolneux et al.
(2000). In this context, an event is considered
meaningful if the expectation of its occurrence would
be very small in a random image. One can thus consider
that in a random image the direction of the gradient of a
given point is uniformly distributed, and that neighbour-
ing pixels have a very low probability of having the
same gradient direction. This algorithm gives a set of
straight line segments defined by the two extremity
coordinates.

Region boundaries are also extracted by using the
same principle but applied on the topographic map – the
level-lines of the surface obtained when assuming that
the pixel grey-level is an elevation value – of the image,
Desolneux et al. (2001). Since we are exploiting level
lines, we can obtain closed regions.

An example of the kind of extraction which can be
obtained is shown in Fig. 2.

Once the geometry has been extracted, it must be
coded as a description vector of a fixed length. This is
achieved by the computation of a set of features. These
features can be classified in two groups: low-level
features and high-level features.

3.1. Low-level geometry features

Two types of low-level descriptors computed from
region edges will be used: the geometric invariants and
the Fourier–Mellin descriptors.

3.1.1. Geometric moments
Using the algebraic moment theory, H. Ming-Kuel

obtained a family of seven invariants with respect to
planar transformations called Hu invariants, Hu (1962).
Those invariants can be seen as nonlinear combinations
of complex geometric moments:

cpq ¼
Z þl

�l

Z þl

�l
ðxþ iyÞpðx� iyÞqf ðx; yÞdxdy; ð1Þ

where x and y are the coordinates of the image f (x, y), i
is the imaginary unit and p+q is the order of cpq. The
geometric moments are particularly useful in the case of
scale changes. Hu invariants have been very much used
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Fig. 1. Examples of images from the data base.
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in object recognition during the last 30 years, since they
are invariant to rotation, scaling and translation. Flusser
(2000) gives their expressions:

u1 ¼ c11; u2 ¼ c20c02; u3 ¼ c30c03;

u4 ¼ c21c12;u5 ¼ Reðc30c312Þ; u6 ¼ Reðc21c212Þ;
u7 ¼ Imðc30c312Þ:

ð2Þ

Dudani et al. (1977) have used these invariants for
the recognition of aircraft silhouettes. Flusser and Suk
have used them for image registration, Flusser and Suk
(1994). They have been modified and improved by
several authors. Flusser used these moments in order to
produce a new family of descriptors of order higher than
3, Flusser (2000). These descriptors are invariant to
scale and rotation. They have the following expressions:

w1 ¼ c11 ¼ u1; w2 ¼ c21c12 ¼ u4;

w3 ¼ Reðc20c212Þ ¼ u6; w4 ¼ Imðc20c212Þ;
w5 ¼ Reðc30c312Þ ¼ u5; w6 ¼ Imðc30c312Þ ¼ u7:

w7 ¼ c22; w8 ¼ Reðc31c212Þ;
w9 ¼ Imðc31c212Þ; w10 ¼ Reðc40c412Þ;
w11 ¼ Imðc40c412Þ:

ð3Þ

3.1.2. The Fourier–Mellin transform
Let f (r) be a causal function (rN0), the Fourier–

Mellin transform, FMT, of f, if it exists, is written as:

8ðk; vÞa ℤ�ℝ;Mf ðk; vÞ ¼ 1
2p

Z l

0

Z 2p

0

f ðr; hÞr�ive�ikhdh
dr
r
; ð4Þ

where k and v are respectively the angular and radial
frequencies in the transform domain and θ and r
respectively are the polar coordinates in the image domain.

The FMTcan be seen as the Fourier transform over the
group of planar similarities (rotations, translations, and
dilations). It is a unique representation of the function f. It
has several properties which make it very useful for grey
level image analysis, Derrode and Ghorbel (2001). The
most important for us will be that the modulus of the FMT
coefficients is invariant under rotations and scaling.

3.2. High-level geometry features

For each region extracted from the image patches (see
Fig. 2(b)) we can compute the following parameters:
perimeter, surface, compacity – defined as the ratio
between the surface and the square of the perimeter – and
barycenter. The alignments (see Fig. 2(c)) can be des-
cribed by their length, orientation, and position. They can
also be used to compute the location of the intersections.

Since the number of regions and alignments is
different for each image patch, we must find a way to
transform these parameters into fixed-length vectors.
We do so by computing histograms for each image
patch. Therefore we will compute the histogram of the
compacities of the closed regions, or the histogram of
the lengths of the alignments. The parameters related to
positions (barycenter, position of the intersections) are
transformed into distances with respect to the image
patch center. The parameters related to orientations are
coded as relative to a principal orientation – the one
having the higher weight in the histogram – in the image
in order to achieve some kind of rotation invariance.
Sizes are normalized with respect to their maximum in
each image in order to get some kind of scale invariance.

The high-level features used by our system are:

• the entropy of the orientations of the alignments;
• the histogram of the distances of the intersections to
the center of the analysis window;

• the histogram of the lengths of the alignments;

Fig. 2. Examples of geometry extraction.
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• the histogram of the distances of the barycenters of the
closed regions to the center of the analysis window;

• the histogram of the compacities of the closed regions.

4. Feature vector classification

The geometric descriptors presented in the previous
section allow us to build a characterization of each of the
image patches stored in our data base. By selecting a
subset of the data base as a learning base and the
complementary subset as the test base we can build an
object recognition system and measure its performances.
Given the learning data base, we want to obtain a
classification system which is able to label each of the
images of the test base according to its likelihood of
belonging to each of the defined object classes. Since we
have an example data base, we can use supervised
learning techniques. However, given the low number of
examples available and the high dimensionality of the
feature space (up to 2500 features per image), we cannot
use neural networks or Bayesian learning.

Kernel based learning methods in general and the
Support Vector Machines (SVM) in particular, have
been introduced in the last years in learning theory for
classification and regression tasks, Vapnik (1998). SVM
have been successfully applied to text categorization,
Joachims (1998), and face recognition, Osuna et al.
(1997). Recently, they have been successfully used
for the classification of hyperspectral remote-sensing
images, Bruzzone and Melgani (2002).

Simply stated, the approach consists of searching for
the separating surface between two classes by the
determination of the subset of training samples which
best describes the boundary between the 2 classes.
These samples are called support vectors and complete-
ly define the classification system. In the case where the
two classes are non-linearly separable, the method uses
a kernel expansion in order to make projections of the
feature space onto higher dimensionality spaces where
the separation of the classes becomes linear. In our
problem we do not use the kernel framework. Section
5.2 will show experimental evidence of the lack of
interest of nonlinear SVM for our particular application.

One drawback of the SVM is that, in their classical
version, they can only solve two-class problems. Some
works exist in the field of multi-class SVM (see Allwein
et al., 2000; Weston and Watkins, 1998, and the
comparison made by Hsu and Lin, 2001), but they are
not used in our system.

For problems with NN2 classes, one can choose either
to train N SVM (one class against all the others), or to train
N×(N−1) SVM (one class against each of the others). In

the second approach,which is the one thatwe use, the final
decision is taken by choosing the class which ismost often
selected by the whole set of SVM. The classification steps
consists of taking the images of the test set, computing the
feature vector and then applying the set of pre-computed
SVM in order to take the decision for the class.

4.1. Feature selection with linear SVM

A linear SVM uses a hyperplane in the feature space
in order to choose the label of each sample depending on
which side it is located in the feature space with respect
to the hyperplane. This classification rule can be seen as a
simple thresholding of a real value. This value is the
normal distance to the hyperplane of the feature vector
of the sample. As in principal component analysis, this
distance can be seen as a new variable which is obtained
by the linear combination of the variables (features)
which are contained in the feature vectors. The weight of
each feature in this linear combination is proportional to
the degree of orthogonality with respect to the separating
hyperplane. A feature parallel to the separating hyper-
plane would be useless for the classification.

This interpretation allows us to sort the features and
select the most pertinent ones for the classification task.
We will use this approach in Section 5.2.

5. Results and performances of the system

In order to present the performances of the system, first
we show and discuss the results obtained and second, we
study several possibilities of optimization of the system.

Since the construction of an exhaustive ground truth
for satellite images is a very difficult task – all objects in
the scene must be manually extracted and labeled – we
will use image patches for the tests also. In order to
simulate the behaviour of the scanning of the image by
an analysis window, the examples of the class OT –
other – are randomly extracted from SPOT 5 scenes. A
visual analysis of these patches is then performed in
order to eliminate those which contain an object of one
of the classes of interest near the center. The behaviour
of the system in the neighborhood of the objects will be
analysed in Section 5.2.3.

5.1. Analysis of the results

In this section, we show the results obtained by the
system. For the training step we will use 75% of the
examples in the data base. Since we have generated new
elements in the data base by applying symmetries, the
total number of examples per class is 450. This gives 340
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examples per class for the training and 110 examples per
class for the tests.

The feature vectors have 2569 components. Features
0 to 61 are the geometric moments (complex moments,
Hu and Flusser invariants), features 62 to 2125 are the
Fourier–Mellin coefficients, and features 2126 to 2569
are the high-level features.

We perform two kinds of analysis. First of all, we study
the two-class separability problem, that is, we compute
the classification ratio for our interest classes (IB,BR,RA,
OT) with respect to each of the other classes. This ratio
gives us the quality of the classification given by each
individual SVM. The results are shown in Fig. 3. As one
can see, IB (better than 84%), RA (better than 83%) and
OT (better than 87%) are very well separated of other
classes. The results for BR are lower, but they are well
separated from IB, RA, SB andOT (better than 80%). One
can see that most of the BR misclassifications correspond
to crossings and different kinds of roads. This can be
explained by the fact that a bridge always contains a road
and that a bridge is a crossing where the two roads are not
at the same level, which is difficult to distinguish from a
nadir point of view.

The second kind of analysis we perform is the one of
overall system performances, that is, the classification rate
for each class and how each of the classes is classified with
respect to the others. The results are shown with a
confusion matrix (Table 1), where each row i corresponds
to the class of the test image, each column j corresponds to
the class decided by the system and each cell in the table
gives the percentage rate of one object of class i being
classified as class j. MD stands for misclassification and
FA stands for false alarm. The values are rounded to the
nearest integer. The ideal system would have a diagonal
confusion matrix with 100% for each term of the diagonal.
One can see that this is not exactly the case for our system.

However, we see that two classes of interest (IB and RA)
are detected at 87% and 66% respectively. We also note
thatmost ofmisclassified bridges are labeled as crossroads,
which is rather logical. Also, 34% of PT are classified as
being NR and the different types of roads are misclassified
as other types of roads, something which we could expect
since most of the descriptors used are scale invariant.

In order to give a quality criterion which resumes
the information of the confusion matrix we define a
diagonality index, also known as Overall Accuracy, as:

D ¼
P
i
aiiP

i; j
aij

� 100; ð5Þ

where aij is the element of the confusion matrix on line i
and column j. This index is equal to 100 in the case of a
perfect recognition system and it is equal to 100

N , N being

Table 1
Confusion matrix for the recognition system

IB PT CR BR WR HW RA NR RW SB OT MD

IB 87 2 0 0 0 3 1 2 0 3 2 13
PT 10 32 12 4 4 12 2 20 4 0 0 68
CR 0 6 17 20 6 13 15 11 3 6 3 83
BR 0 10 13 30 9 12 14 2 5 4 1 70
WR 3 21 6 12 12 13 2 18 8 5 0 88
HW 1 13 9 20 9 11 4 6 10 6 2 89
RA 1 5 3 1 2 9 66 1 3 9 1 34
NR 7 34 6 6 17 2 2 19 7 0 0 81
RW 0 18 7 23 17 6 2 2 20 2 6 80
SB 0 0 1 0 0 3 26 1 1 56 12 44
OT 0 2 0 0 0 0 2 0 4 36 56 44
FA 3 11 5 9 7 7 8 6 4 6 3

D=36.9. κ=99.330. The class nomenclature used is: isolated
buildings (IB), paths and tracks (PT), crossroads (CR), bridges (BR),
wide roads (WR), highways (HW), roundabouts (RA), narrow roads
(NR), railways (RW), suburbs (SB).

Fig. 3. Two-class separability problem.
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the number of classes in the case of a system which
randomly chooses the class for each object with the
same probability. We will also compute the κ coefficient
Congalton (1991), which is often used to measure the
performances of classification systems, and which is
defined by:

j ¼ p0 � pz
1� pz

; ð6Þ

where p0 is the mean value over the diagonal matrix
elements, and pz is the fraction of pixels that could have
been accidentally classified correctly:

pz ¼ 1
N2

XN
i¼1

XN
j¼1

aij
XN
j¼1

aji

 !
ð7Þ

For the confusion matrix of Table 1, we have
D=36.9 and κ=99.330.

Since we are trying to reproduce a task which is
usually performed by a human operator, it is interesting
to compare the performances of the system with the
results obtained by a photo-interpreter. In order to do so,
we provided a subset of the image data base to five
remote sensing experts who were not involved in the
data base construction and we asked them to label each
one of the image patches. The mean of the confusion
matrices of each of the operators is shown in Table 2. As
we can observe, the results are better than those obtained
by our automatic system in terms of overall accuracy
(69%). However, we obtain κ=99.167, which is lower
than the value obtained by the automatic system. This
may be understood as the fact that the automatic system
makes systematic errors, while the set of photo-

interpreters make errors which are not correlated. This
may be an additional interest of an automatic system,
since the results are reproducible. It is interesting to note
that among the five top classes, four are common to both
experiments: IB, RA, SB, OT. It is also interesting to
note that we have the same trend to confuse BR and CR,
and the different classes of roads between them.

Finally, we analyze the results obtained when only
the three classes of interest are taken into account. All
other classes are gathered under the label OT+. This
setup allows us to use fewer SVM, which leads to a
simpler and less error-prone voting decision system.
This time we analyze the sensibility of the system to the
set of descriptors used. Table 3 shows the results
obtained with the low-level geometry descriptors only
and Table 4 shows the results obtained with the high-
level descriptors only. Table 5 shows the results
obtained when the two sets of descriptors are jointly
used. As one can see, the overall accuracy is much better
than when the system had to learn eleven classes. We
can also see that the high-level geometry descriptors
have worse separability capabilities than the low-level
ones, but the best results are obtained when both types
of descriptors are used, achieving an overall accuracy of
nearly 85%. For the three experiments the κ coefficients
are very high and the combination of both approaches
gives the best results.

5.2. System optimization

5.2.1. Feature selection
Reducing the computational burden of the classifica-

tion system is very important in the case of operational
processing of images. In this section we investigate the
possibility to withdraw some of the features used in the
system in order to speed up the processing. In order to
identify the features which contain a little information for
our problem, we apply the approach presented in Section
4.1. Another approach, as for instance performing the
learning and the test steps leaving out different sets of
descriptors could be envisaged, but this is very time

Table 2
Confusion matrix for the human operator experiment

IB PT CR BR WR HW RA NR RW SB OT MD

IB 80 2 0 0 0 0 0 9 2 7 4 20
PT 2 43 13 8 10 2 0 19 2 2 0 67
CR 0 6 60 4 6 3 0 10 6 6 1 40
BR 0 0 16 69 4 6 0 4 0 0 1 31
WR 0 15 0 10 20 10 0 37 15 0 0 80
HW 0 4 0 0 7 82 0 0 7 0 0 18
RA 0 0 3 0 0 0 97 0 0 0 0 3
NR 2 28 12 2 2 2 0 51 0 0 0 49
RW 3 11 20 7 14 5 0 9 27 2 2 73
SB 8 0 0 0 4 0 0 0 0 87 4 13
OT 0 1 0 0 0 0 0 0 0 7 92 8
FA 1 7 6 5 5 4 0 7 3 4 0

D=69.0. κ=99.167.

Table 3
Confusion matrix for the low-level geometry characterization

IB RA BR OT+ MD

IB 88.74 2.61 6.54 2.09 11.25
RA 4.90 70.29 7.35 17.45 29.70
BR 2.09 15.96 79.58 2.35 20.41
OT+ 13.65 7.11 1.84 77.38 22.61
FA 6.88 8.56 5.41 7.13

D=79.01. κ=99.277.
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each descriptor.

Fig. 4 show the weight of each feature (direction of
each separating hyperplane) for the IB versus BR SVM.
It is interesting to note that high-level geometry seems to
be more useful than low-level geometry – this is true for
all SVM – and that Fourier–Mellin coefficients are less
significant than geometric moments. It is also interesting
to note that the weight of the Fourier–Mellin coefficients
seems to follow a pseudo-periodic law. This is due to the
fact that their order in the vector is a lexicographic one on
the (fθ, fρ) log-polar frequency plane. The results are
similar for other pairs of classes, but the more significant
frequencies are not the same for all SVM.

Since the SVM classification step consists of comput-
ing an euclidean distance in the feature space, this
computation is much less expensive than the computation
of the features themselves. That means that in order to
significantly reduce the computational complexity of the
recognition system one has to reduce the number of
features to be computed. Only the features which are not
significant for all of the SVM can be suppressed. In order
to identify thus such features, if any, we compute themean
weight of the features for all the SVM of the system. The
result is shown in Fig. 5. One can see that the order of
significativity of the features is the same than for the
individual SVM. The feature with the maximal value
(number 2377, weight 0.049) is one value of the region
compacity histogram, but its weight represents less than
5% of the total contribution. On the other hand, each
Fourier–Mellin coefficient has a very small contribution,
but their integrated contribution is of about 30%. It is also
interesting to note that the computational cost of the
Fourier–Mellin transform is negligible with respect to the
high level geometry, since an FFT-based algorithm is
used. These results lead us to the conclusion that it is not
possible to identify a set of features which could be
suppressed from the vector.

5.2.2. Kernel optimization
Our goal here is to choose the optimum set of

parameters for the SVM in order to maximize the recog-

nition performances of the system. The SVM software
used for our research, SVM-light Joachims (1999), can
use different kinds of kernels (linear, RBF, polynomial
and sigmoidal) and each one has its own set of pa-
rameters. The trade-off between the training error and the
margin is also a parameter of the system. This means that
an exhaustive search of the set of parameters of
each SVM with a learn and test cycle is a very costly
operation.

Using the ξα-estimates of the error, the precision and
the recall introduced by Joachims (2000), one can easily
define the following cost function for a given SVM:

C ¼ 1
100

N 2
SVd ðMCþ 1Þd Err

Precd Rec
; ð8Þ

withNSV the number of SVafter the learning step, MC the
number of misclassified learning examples, Err the
estimated error, Prec the precision and Rec the recall.
Recall is defined as the number of good detections divided
by the total number of objects of the class, that is, the
detection probability. Precision is defined as the number
of good detections divided by the total number of
detections. Its meaning is similar to the inverse of false
alarm probability. So for Eq. (8), the lower the value ofC,
the better the generalization capabilities of the SVM. It is
interesting to note that this cost function can be computed
right after the learning stepwithout the need for using a set
of test examples. On the other hand, it is just a theoretical
estimate, which is pessimistic. But it is sufficient for the
kind of analysis that we want to perform.

Using the cost function of Eq. (8) we have been able
to sort by their performances the SVM learned with
different sets of parameters for several couples of object
classes. Our experiments do not show any kind of trend
about the type of kernel to be used. Among the ten best
SVM for each couple of classes, there was always the
linear kernel. The interest of using a linear kernel is two-
fold: first, the weight of the components of the feature
vector can be directly obtained from the separating

Table 5
Confusion matrix for the high- and low-level geometry characterizations
together

IB RA BR OT+ MD

IB 92.93 1.30 5.23 0.52 7.06
RA 4.01 80.80 4.91 10.26 19.19
BR 2.29 8.97 86.43 2.29 13.56
OT+ 10.59 5.57 4.08 79.73 20.26
FA 5.63 5.28 4.14 4.96

D=84.99. κ=99.326.

Table 4
Confusion matrix for the high-level geometry characterization

IB RA BR OT+ MD

IB 79.58 3.14 9.94 7.32 20.41
RA 8.84 71.49 11.30 8.35 28.50
BR 8.10 6.71 74.70 10.47 25.29
OT+ 6.49 6.49 13.63 73.37 26.62
FA 7.81 5.45 10.57 9.77

D=74.79. κ=99.275.
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hyperplane (see Section 5.2.1); and second, there is only
one parameter to set, the trade-off between the training
error and the margin. These conclusions lead us to the
choice of linear SVM and allow us to concentrate on the
choice of the trade-off. Our experiments show that there
is a small variability of the value of this parameter as a
function of the couple of classes used and also as a
function of the particular set of examples used for the
learning step. However, this variability is small enough –
in terms of cost function and also in terms of global

system performances – to choose the same value for all
the SVM. In our case this parameter was chosen equal
to 4.

5.2.3. Sampling step of the analyzing window
Since the object recognition in a complete scene is

performed by scanning the image with the analysing
window, another interesting parameter of our system is
the sampling step used for this scanning. Indeed, we
sequentially apply the classification system to an image

Fig. 5. Mean feature weight for the complete system.

Fig. 4. Feature weight for the IB/BR SVM.
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patch extracted with a sliding window. In order to
reduce the computation burden, we are interested in
using a large sampling step, that is, a small overlapping
between successive image patches. On the other hand, a
too large sampling step can make the system miss some
objects, since the system has been trained to recognise
objects centered in the image patches.

So we are interested in the measure of the resolution
of our system. This resolution is defined as the width of
the point spread function of the system. One way of
measuring this point spread function is to apply the
recognition system over different kinds of objects and
analyse the shape of the system output. One problem
here is that the output of a recognition system is a set of
labels whose order does not make any sense, so the
shape of the system output is meaningless. What we
propose to do is to measure the shape of the output of
each SVM for each couple of classes and derive an

estimate (the mean, for instance) of the overall system
resolution. An example of this kind of analysis is shown
in Fig. 6 for the couple of classes RA/OT+.

With this kind of experiment we can estimate the
maximum sampling step to five pixels which means that
for an N×M pixel image, N�M

5�5 evaluations of the
recognition system are needed.

6. Conclusion

We have shown that with a very simple approach it is
possible to recognize complex objects on remote
sensing high resolution images without explicit model
construction. The system is based on the description of
the geometry of the objects followed by a supervised
SVM classification. We emphasize that the approach
presented in this paper is completely independent of the
kind of object we want to recognize – assuming that the
object fits in the analysing window, this is why we can
recognise roads but not road networks, and that its
geometric features are pertinent – and that no a priori
knowledge is introduced in the system. Only a set of
examples for the learning step is needed. This is very
important for being able to use the system in different
application contexts. The system can learn to detect a
new class of objects if a set of examples is available. The
use of SVMmakes learning possible even if only a small
number of examples exist. The proposed scheme allows
also the use of other descriptors. Texture or statistical
grey-level descriptors could be used if they were found
useful.

This system could be used in operational information
extraction facilities, but it should be preceded by a
focusing strategy, since the sequential scanning of entire
images can be very time consuming.

Another aspect of the system which should be
improved is the set of features used for the classification.
We have shown that it is not possible – from an SVM
point of view – to eliminate a significant number of
features among those used in our system. Other feature
selection methods should be tested. Also, some research
in order to produce new features pertinent for high
resolution remote sensing images should be conducted.
Finally, further tests with additional data bases would be
interesting in order to validate the applicability of the
approach to other types of objects and sensors.
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Fig. 6. Example of SVM output over an object of the class RA. The
arrow indicates the scanning path of the analysis window.
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Qualitative Spatial Reasoning for High-Resolution
Remote Sensing Image Analysis

Jordi Inglada and Julien Michel

Abstract—High-resolution (HR) remote-sensing images allow
us to access new kinds of information. Classical techniques for
image analysis, such as pixel-based classifications or region-based
segmentations, do not allow to fully exploit the richness of this
kind of images. Indeed, for many applications, we are interested
in complex objects which can only be identified and analyzed by
studying the relationships between the elementary objects which
compose them. In this paper, the use of a spatial reasoning tech-
nique called region connection calculus for the analysis of HR
remote-sensing images is presented. A graph-based representation
of the spatial relationships between the regions of an image is
used within a graph-matching procedure in order to implement
an object detection algorithm.

Index Terms—Graph theory, image analysis, image representa-
tions, spatial reasoning.

I. INTRODUCTION

B ECAUSE of the diversity of sensors and the increase
of their spatial resolution and repetitivity, the automatic

analysis of images is a crucial asset in the remote-sensing
field. It is therefore needed to design and implement new
image analysis techniques which are able to perform complex
processing in an efficient manner. In this context, much work
has been done for the automatic information extraction from
remote-sensing images aiming to provide a set of features and
descriptors which are compact and parsimonious in order to
feed them into learning systems. This type of features come
often from low-level processing and are not able to capture
the richness and complexity of high-resolution (HR) images.
Indeed, the improvement of the spatial resolution makes that
the objects of interest are not any more limited to several pixels,
but they are represented by large areas containing subobjects.
This kind of objects cannot efficiently be described by textures,
edges, etc.

Recent publications present interesting advances in the
recognition of particular objects as buildings [1] or urban areas
[2], but this kind of approaches are not generic enough to deal
with different types of objects.

It is therefore useful to use techniques which are able to deal
with higher levels of abstraction for the representation and the
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manipulation of the information contained in the images. In
this paper, we will use spatial reasoning techniques in order
to describe complex objects. We have chosen to use the well-
known region connection calculus (RCC8) [3] in order to
describe the relationships between the regions of an image.

The regions used for the spatial reasoning are obtained
with a multiscale segmentation based on geodesic morphology
[4]. The mathematical morphology approach has been selected
because, in contrast to linear multiscale approaches, it allows
one to select objects in terms of their size. This has been shown
to be interesting in meter and submeter resolution images for
detecting vehicles, buildings, etc. Our algorithm is able to
produce regions superimposing across the scales.

This allows one to exploit the full extent of the RCC8
relationships set. The regions and their relationships are rep-
resented by means of an attributed relational graph (ARG)
where the nodes represent the regions and the arcs represent
the RCC8 relationships. The ARG can be made more complete
by adding region attributes to the nodes, as for instance shape
and radiometric features.

Finally, object detection and recognition can be seen as a
graph-matching problem for which efficient algorithms can be
implemented. In these context, a greedy search combined with
a graph metric which is able to use all the information contained
in the ARG has been implemented.

In this paper, the theoretical basis of the approach and
examples of application to real images will be presented.

This paper is organized as follows. Section II introduces the
principles of RCC. Section III presents the approach used for
image segmentation. Section IV presents the graph-matching
problem. Section V describes the implementation of the pro-
cedure. Section VII presents some example of results on real
images. Section VIII draws some conclusions.

II. RCC

A. Spatial Reasoning

The spatial organization of the objects in images gives an
important information for the recognition and interpretation
tasks, particularly when the objects are located in complex
environments as it is usually the case in remote-sensing HR
images.

Spatial reasoning can be defined as the set of techniques
for the manipulation of the description of physical objects by
taking into account their mutual interactions expressed in terms
of their shapes, sizes, positions, orientations, and plausible
movements [5].

There are several space logics. Different theories use dif-
ferent primitive features: points, lines, polygons, etc. The base

0196-2892/$25.00 © 2008 IEEE
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spatial relationships used by each theory may also be different:
inclusion, occlusion, connection, etc. Mereological—study of
the parts1 and belonging theories—, topological theories—
where limit points and connectivity play a main role—, and
mereotopological theories—connectivity, belonging, external
connectivity—have been proposed for the last 20 years.

However, literature shows that image processing applicative
works do not use the aforementioned theories, but rather more
pragmatic approaches. This has the consequence of not be-
ing able to describe complex scenes, but only testing simple
hypothesis on image objects. In a context of data mining,
automatic interpretation, learning by example, Geographical
Information Systems, etc., more powerful theories are needed.

There is a great variety of representations for storing and
reasoning about spatial information. One can distinguish two
main approaches: qualitative representation based on object
coordinates and qualitative representations based on a high
conceptual level vocabulary for the description of spatial
relationships.

Qualitative languages can add very powerful functionalities
to spatial information systems working with quantitative data.

We will present here two possible approaches to qualitative
spatial reasoning about space:

1) qualitative spatial reasoning systems applied to quantita-
tive representations of space;

2) qualitative theories of space and their associated reason-
ing systems.

The motivation for a qualitative representation of space
comes from the need to perform computations allowing a
computer to represent and reason with spatial concepts without
relying on quantitative techniques.

del Pobil et al. [5] propose to define the base concepts—
shape, size, relative position, etc.,—but they do not provide an
associated theory nor an algebra (operators).

Bennet et al. [6] have studied the tradeoff between expressive
power, the possibility of performing calculus, and the straight-
forwardness of the qualitative formalisms. The have shown
that a set of topological relationships can be described by a
first-order language and how they can be coded in a zero-
order intuitionist logic to provide an efficient algorithm. They
also proposed ways of combining qualitative and quantitative
information with a coherent architecture:

1) quantitative data structures are used inside a polygonal
region database;

2) a qualitative relationship language is used to make high-
level queries;

3) an intuitionist propositional logic is used to compute the
inferences needed to answer user queries.

Wang and Liu [7] propose a visual knowledge network which
is actually an algebraic structure on which visual operations
(union, zoom, occlusion, etc.). Inference algorithms capable of
performing generalization and specialization can be used on
this type of structure.

It can therefore be concluded that many different approaches
have been proposed. Cohn and Hazarika [8] made an exhaustive
synthesis work.

1Meros, Greek for part

Fig. 1. Transitions between RCC8 relationships.

B. RCC8

RCC [3] is based on the notion of connection between
pairs of regions in space. This connection is described by one
among a set of possible relationships. One can therefore derive
different RCC systems depending on the number and the nature
of the connections accounted for. One of these systems, RCC8
is particularly interesting, since it is made of exhaustive and
disjoint relationships. These properties simplify the reasoning
techniques. As shown in Fig. 1, the eight RCC8 relationships
go from disconnection, DC, to equivalence, EQ, through all
intermediate possibilities by taking into account tangency. It is
important to note that all these relationships are symmetrical
except for TPP and NTPP which are antisymmetrical. This
explains the additional relationships TPPi and NTPPi and their
number (eight instead of six). If one does not take into account
tangency, the RCC5 system is obtained.

After defining the RCC8 system, one can wonder how
to compose relationships: knowing that region (a) is linked to
region (b) by relationship R1 and that region (b) is linked to
region (c) by relationship R2, which is the relationship between
regions (a) and (c)? Even in some cases, one can find a unique
answer to this question; most of the cases do not allow this. For
instance, if the two known relationships are DC, no information
can be inferred about the composition [9], [10]. This is a
limitation of the RCC8 system. However, the composition table
of RCC8 (Table I) will help to speed up computations.

The implementation of a reasoning system based on RCC8
and more generally based on qualitative information has made
the object of many research [11]–[15]. Many approaches have
been proposed, some of them using fuzzy logic in order to
overcome the weak nature of the composition relationships,
some others trying to define an algebra for relationships. These
works are usually purely theoretical and do not propose any hint
for the practical implementation. Works by Jun Chen et al. [16]
proposing modifications to RCC8 using the Voronoi regions of
the objects in order to enrich the DC case, are worth noting.

III. MULTISCALE IMAGE SEGMENTATION

A. State of the Art

As mentioned in Section II, RCC deals with regions of space
and how they connect and overlap each other. Therefore, the
first step toward the use of this system is to obtain a suitable set
of regions. The requirement for overlapping excludes a single
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TABLE I
RCC8 RELATIONSHIP COMPOSITION TABLE

layer segmentation method, where all the regions would be
disconnected from each other.

Watershed segmentation allows segmentation at different
level of details, but this segmentation is hierarchical, and re-
gions at a higher level of detail are included into regions at a
lower level, which is not suitable for RCC.

Laporterie [17] introduced a pyramidal decomposition of
images based on mathematical morphology. She showed the in-
terest of this method, called morphological pyramid, in the field
of image analysis and fusion. Still, the morphological pyramid
decomposition produces a multiresolution decomposition of the
scene, which induces two types of loss of precision for the
details. First, morphological filters are nonlinear, so Shannon
sampling conditions not guaranteed and information is lost at
each subsampling step. Second, we cannot recover precisely the
extracted details at full resolution.

Pesaresi and Benediktsson [4] derived a new morphologi-
cal segmentation based on the morphological profiles. They
showed the interest of using a geodesic metric in the morpho-
logical operators, which make them adaptive to the structures
in the image and reduces shape noise. Such operators are called
morphological operators by reconstruction. They used these
operators to design two functions representative of the convex
and concave structures of the image with respect to the size
of the structuring element. They then used these functions to
design a single-layer single-scale segmentation of these struc-
tures, as well as a single-layer multiscale segmentation based on
the profile of these functions for increasing structuring element
sizes.

B. Proposed Segmentation Method

Neither the morphological pyramid nor the morphological
profiles can fit our needs. The first is far to lossy, and the second
is a single-layer method, with no possible overlapping. Still,
we can take advantages of the iterative, pyramidal structure of
the first one, while using the more robust concave and convex
membership functions of the second one. For a given pixel,
the convex membership function can be seen as the likelihood
for that pixel to be part of a convex (i.e., brighter than the
surrounding background) structure of the image whose size
is smaller than the size of the structuring element. A similar

definition can be applied to the concave (i.e., darker than the
surrounding background) membership function. The leveling
function ψN (f) is a simplification of the image f , where all
convex and concave structures with a size smaller than the size
of the structuring element have been obliterated.2

Definition 1 (Convex Membership Function): The convex
membership function μN (f) is defined as follows:

μN (f) = f − γ∗
N (f) (1)

where f is the image function and γ∗
N denotes the opening by

reconstruction operator, with a structuring element of size N .
Definition 2 (Concave Membership Function): The concave

membership function ηN (f) is defined as follows:

ηN (f) = ϕ∗
N (f) − f (2)

where f is the image function and ϕ∗
N denotes the closing by

reconstruction operator, with a structuring element of size N .
Definition 3 (Leveling Function): The leveling function

ψN (f) is defined as follows:

ψN (f) =

⎧
⎨
⎩

γ∗
N : μN (f) > ηN (f)

ϕ∗
N : μN (f) < ηN (f)

f : μN (f) = ηN (f).
(3)

Using these three functions, we propose the following seg-
mentation scheme.

1) Define the range of scales S = {s1, s2, . . . , s2} for the
segmentation, where n is the number of levels of analysis
and si is the size of the structuring element used in the
segmentation step i.

2) Define f0 as being the image to segment.
3) For each scale si in the range S, the steps are as follows.

a) Segment the convex details of the image fi using the
convex membership function μsi

.
b) Segment the concave details of the image fi using the

concave membership function ηsi
.

c) the image fi+1 as being the image fi simplified by the
leveling function ψsi

.

2For more details on morphological operators, geodesic distance, and level-
ing, please refer to the original paper [4].
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Fig. 2. Application of the multiscale geodesic segmentation algorithm to
image 2. (a) Convex map (scale 2). (b) Convex map (scale 15). (c) Concave map
(scale 2). (d) Concave map (scale 15). (e) Leveling map (scale 2). (f) Leveling
map (scale 15). (g) Bright segmentation (scale 2). (h) Bright segmentation
(scale 15). (i) Dark segmentation (scale 2). (j) Dark segmentation (scale 15).

The range of scales S can be chosen in order to select
objects of a given size. Although a decision rule is proposed
in [4] for the segmentation steps a) and b), we choose to use
a basic thresholding technique, which seems to extract more
information from the images. For a range of n segmentation
scales, this segmentation method produces n segmentation
layers of convex details and n segmentation layers of concave
details. Fig. 2 shows the result of applying four levels of the
segmentation algorithm to the image of Fig. 3. We can see
the simplification effect of the leveling function, as well as the
accuracy of the convex and concave membership function in

Fig. 3. Quickbird image at 60-cm resolution.

detecting brighter and darker details. The segmentation images
have been postprocessed with shape regularization using binary
morphology and object size filtering.

Although this segmentation approach gives satisfaction in
our application, it is worthy to note that the results are far from
being perfect and more research in this direction is needed.

IV. GRAPH MATCHING

Graph matching has widely been used for object recognition
and image analysis. One can cite for instance the works of
Buhmann et al. [18] where graph matching on a multiresolution
hierarchy of local Gabor components is used. A similar ap-
proach is proposed in [19]. The same author extends this paper
in [20] where the hierarchical graph matching allows for size
and invariant object recognition. The drawback of this approach
is that the model has to be built before, whereas we are looking
for a representation of objects, groups of objects, etc.

In [21], each node in the graph represents a feature (e.g.,
curvature points) and arcs describe the distances between the
features. A Hopfield binary network is used to perform sub-
graph matching.

The works of Bunke [22], as for instance, constitutes a very
good introduction to object recognition with graph matching.
A novel concept, the mean of a set of graphs is introduced.
Also, Sanfeliu et al. [23] give a good overview of graph-
based representations and techniques for image processing and
analysis.

Cyr and Kimia [24] measure the similarity between two
views by a 2-D shape metric of similarity measuring the
distance between the projected, segmented shapes of the 3-D
object. However, the approach is limited to the recognition of
the very same object and for very simple shapes.

Shams et al. [25] propose a comparison of graph matching
and mutual information maximization for object detection re-
stricted to the case of multidimensional Gabor wavelet features.
They show that graph matching has a computational complexity
which is two to three times lower than mutual information.

The originality of the approach presented here is to work on
graphs which describe qualitative spatial relationships, which
will allow us to represent classes of objects, rather than multiple
points of view of a particular object.

A. Theoretical Background

Graphs are abstract mathematical entities which are use-
ful for modeling and solving complex problems. They are a
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generalization of the tree concept which is usually used in
computer science for solving decision problems. One should
note that, while the complexity and implementation of algo-
rithms operating on trees are well known, their generalization to
graphs brings new complexity issues. Graphs are nevertheless
used to solve classical problems as the traveler salesman prob-
lem or the representation of complex structures as for instance
neural networks. We will use the following definition.

Definition 4 (Graph): A graph G is made of a finite set
of nodes V and a set E of binary relationships on V × V
called arcs.

To types of graphs can be distinguished.
Definition 5 (Oriented Graph): An oriented graph G is a

graph whose arcs are couples of nodes (ordered relationship).
Definition 6 (Nonoriented Graph): A nonoriented graph G

is a graph whose arcs are pairs of nodes (ordered relationship).
From these definitions, one can define the node’s neighbor-

hood.
Definition 7 (Node’s Neighborhood): For a nonoriented

graph, a node’s neighborhood is defined as the set of nodes
which are linked to it by an arc.

For an oriented graph, the node’s neighborhood is defined as
the set of destination nodes having the given node as source.

B. Graph Similarities

Three different approaches to graph comparison can be dis-
tinguished [26].

1) Measure of physical properties: A set of physical charac-
teristics which may be problem dependent are measured
in the graph and are used to compare several graphs.

2) Occurrence of canonical structures: The comparison is
made using a set of canonical structures present in the
graphs.

3) Structural comparison: the comparison is made using a
measure defined on the graph structure.

The structural approach is the one which exploits best the
graph topology without being problem dependent, but is rather
difficult to implement in an efficient manner.

C. Isomorphism, Distance, and Similarity Measure

In order to measure a purely structural similarity between two
graphs, many measures have been proposed [27], [28]. Most of
these measures are based on the research of the largest com-
mon subgraph between the two compared graphs. Sorlin and
Solnon [29] defined a generic measure which unifies several
approaches. It is based on an evaluation of a function which
depends on the two compared graphs. This function depends
on the common characteristics of the two graphs (nodes, arcs,
and labels associated to both of them), and it may be tuned
using two functions f and g which determine the nature of the
measure. The following definitions are useful for the remainder
of the presentation.

Definition 8 (Graph Match): Let G and G′ be two graphs
defined, respectively, over V and V ′. A graph match is a
subsample of m ⊆ V × V ′ containing the set of pairs (v, v′)
so that the nodes v and v′ are matched.

Definition 9 (Common Descriptors): We call common de-
scriptors of a graph match m the set descr(G) �m descr(G′),
where the operator �m stands for the set of all nodes, node’s
labels, arcs, and arc’s labels which are common to G and G′

within a match m.
Definition 10 (Split Nodes): We call Split nodes or splits(m)

of a match m of two graphs G and G′ the set of nodes G
matched to several nodes of G′ and the nodes G′ matched to
several nodes of G.

These definitions allow us to introduce the following generic
similarity measure.

Definition 11 (Similarity With Respect to a Match): The
similarity between two graphs G and G′ with respect to a match
m is defined by

simm(G,G′)=
f (descr(G) �m descr(G′))−g (splits(m))

f (descr(G) ∪ descr(G′))
(4)

where f and g are two application dependent functions.
Definition 12 (Similarity Between Two Graphs): The simi-

larity between two graphs G and G′ is defined by

simm(G,G′) = max
m⊆V ×V ′

×f (descr(G) �m descr(G′)) − g (splits(m))

f (descr(G) ∪ descr(G′))
(5)

where f and g are two application dependent functions.
Depending on the choice made for f and g several measures

can be obtained (see Table II).

V. IMPLEMENTATION

A. Elementary Computation

1) Principles: The first step for assessing the usefulness of
RCC8 for image analysis, was to implement a technique for the
efficient computation of the relationship between two regions of
space. The first tool we will use is the nine-intersections matrix
(Table III), which is a binary 3 × 3 matrix where 0 (empty
set) and 1 (nonempty sets) represent the intersections between
the exterior, the boundary, and the interior of region A with the
interior, exterior, and boundary of region B.

M =

⎛
⎝

card(Ă, B̆) card(Ă, Ḃ) card(Ă, B̄)
card(Ȧ, B̆) card(Ȧ, Ḃ) card(Ȧ, B̄)
card(Ā, B̆) card(Ā, Ḃ) card(Ā, B̄)

⎞
⎠

where card is a function which is equal to 1 if the set is not
empty and 0 otherwise, Ă is the interior of region A, Ȧ its
boundary, and Ā its exterior. Among the 29 possible matri-
ces, only eight are physically plausible, and they correspond
to the eight RCC8 relationships. Being able to compute the
nine-intersections matrix for a pair of regions of space means
knowing the RCC8 relationship between them.

2) Optimization: This method has a main drawback: its
complexity. This complexity is dependent on the image size.
This is particularly annoying, since remote-sensing images are
very large, while the regions of interest may be small. There-
fore, using masks which have the same size of the image can
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TABLE II
SEVERAL SIMILARITY MEASURES OBTAINED FROM THE GENERIC MEASURE

TABLE III
CORRESPONDENCE BETWEEN THE RCC8 RELATIONSHIPS AND THE

NINE-INTERSECTIONS MATRICES

very much slow the process. In order to reduce the computation
time, three optimizations have been implemented.

The first optimization concerns the cardinal computation.
Since what interests us is the fact whether this cardinal of
the intersections is zero or not, we implement a lazy operator,
which goes through the image and stops when it finds the first
nonzero pixel.

The following optimization concentrates on the computation
of the elements of the nine-intersections matrix. We have seen
that only eight among the 29 possible matrices are physically
plausible. This means that the components of the matrix are
redundant. Therefore, a binary decision tree is used where
only one component at each step is examined. This tree allows
one to find the RCC8 relationship by examining at most four
components of the matrix. The decision tree used is presented
in Fig. 4.

B. Computing From Images

This implementation has first been proposed in [30]. For each
region, we have a binary mask coming from the segmentation
step. The exterior of the region is obtained by inverting the
mask. The interior of the region is obtained by applying a
morphological erosion of size 1 pixel. The boundary is obtained
by subtracting the interior to the mask. Once these three regions
are obtained for each one of the regions of interest, we obtain
the intersections by applying a binary addition of those.

Despite of the two optimizations presented Section V-A2,
the computation of the relationships from images is still very
time consuming. Since, as it will be shown later on, the most
common relationship between the regions of the image is
disconnection, a particular optimization for this case has been
implemented. We exploit the fact that most of the disconnected
regions are also far away from each other. That means that their
bounding boxes will also be disconnected. The bounding box
computation is much faster than the morphological operations,

Fig. 4. Binary decision tree for the RCC8 relationships.

so this way of evaluating the DC relationship, which is the first
one in the decision tree, will allow an important acceleration of
the evaluation of the relationships.

C. Vector Computation

Another way of computing the RCC8 relation from the
segmentation is to first vectorize the two regions into polygons.
Then, we try to decide each of the four conditions in the
decision tree. We track down edges configuration characterizing
one of the following conditions.

1) Interior of A with exterior of B: We need to find one
vertex of A which strictly lies out of B, or two vertices of
A lying strictly inside B, and linked by an edge crossing
B an even times.

2) Interior of B with exterior of A: This is exactly the
contrary of the first point.

3) Interior of A with interior of B: We need to find a vertex
of A strictly inside B or two vertices of A outside B and
crossing B an even times.

4) Edge of A with edge of B: We need to find two tangent
edges or a vertex of A on an edge of B, or the opposite.
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This vectorization step introduces an improvement of pre-
cision and complexity. In the end, an average computation
time 20 times lower than the image computation algorithm is
obtained.

D. Analysis for a Set of Regions

1) Basics of the Computation: The application of the com-
putation of the relationship between a pair of regions to all the
pairs of regions in the image may be very time consuming. In
order to reduce the number of computed relationships, we will
take into account the symmetry properties of the relationships.
This allows one to reduce by a factor of two the number of
computed relationships. We also use the fact that the multiscale
segmentation gives disconnected regions for a given scale.

2) Optimization: Using the composition Table I, further op-
timizations can be implemented. Indeed, this table allows us to
unambiguously infer the relationship in 27 cases out of 64. In
16 other cases, the composition table allows one to jump the
first level of the binary decision tree of Fig. 4. In other seven
cases, the composition table allows one to decide the third level
of the tree.

In order to fully exploit this information, before computing
the relationship between a region (a) and a region (c), we will
look for an intermediate region (b) for which the relationships
which link it to (a) and (c) have already been computed. If such
a region exists, two cases may appear.

1) The knowledge of the already computed relationships al-
lows one to jump the first or the third level of the decision
tree: This information is stored and the examination of
the intermediate regions found goes on.

2) The knowledge of the already computed relationships
allows one to unambiguously determine the new relation-
ship: the computation is finished.

If at the end of the examination of the intermediate regions
it was impossible to determine the needed relationship, a com-
putation using the optimizations of the previous section is done
by using all the information stored during this precomputation
step.

3) Results: First, we segment a Quickbird 60-cm resolution
panchromatic image with the multilevel segmentation tech-
nique proposed in Section III. The segmentation is performed
with two different scales, which gives us four layers containing
a total of 400 regions. Using the RCC8 computation based on
polylines presented in Section V-C, and the group optimiza-
tion presented in Section V-D2, the overall extraction process
took only 50 s, including the segmentation step. Compared
to the computation based on images presented Section V-B,
the computation based on polylines is 20 times faster in av-
erage. The speed gain for a single computation is from 2
times faster to 1500 times faster depending on the regions’
configuration. This optimization is significant regarding our
previous work [3]. The optimization presented in Section V-D2
implies a gain of about 30%. This optimization helps to decide
about 40% of the relationships, and can solve 11% of the
cases without any computation. Table IV shows the statistics
of the RCC8 relationships obtained with the Quickbird scene.
Of course, these statistics will depend on the segmentation

TABLE IV
EXAMPLE OF RCC8 STATISTICS

parameters. In particular, the number of levels of the analysis
will have some effects on the less represented relationships’
statistics.

VI. GRAPH COMPARISON TECHNIQUES

A. Information Representation

Once a method is available for the computation of the RCC8
relationships between the different regions of an image, a data
structure is needed for their representation and manipulation.
A graph structure is straightforward for our problem, since we
have a set of elements—regions—which can be described by
attributes (index of the image, index of the region in the image,
region characteristics, etc.) and a set of relationships linking
these elements (the RCC8 relationship). We have therefore
decided to use a nonoriented graph, where the arcs represent
a pair of relationships (the direct and the inverse relationships)
without representing the DC relationship. This graph structure
will allow us to use well-known algorithms for graph manipu-
lation and matching. Figs. 5 and 6 show two examples of the
RCC8 graph representation for two scenes.

B. Extraction of Connected and Biconnected Components

As shown in Fig. 6, the more complex the scene, the more
dense and detailed the RCC8 graph. It is therefore interesting
to have a mean of splitting the graph in a set of coherent
subgraphs which correspond to objects in the scene. In order
to do that, we will use to different concepts: connected graphs
and biconnected graphs.

Definition 13 (Connected Graph): We call a graph G con-
nected if for any couple of nodes (v, v′) of G, one can find a
path from v to v′ through a set of arcs and intermediate nodes.

Definition 14 (Biconnected Graph): We call a graph G bi-
connected if it is connected and if the removal of a single node
makes it become not connected.

We are therefore interested in partitioning a graph in a set of
connected graphs of maximum size (i.e., to which one cannot
add any node without making it loosing its connection). The
same goes for biconnection, which is a stronger condition
than connection. Indeed, a connected graph can be itself split
in a set of biconnected graphs. The nodes which allow the
connection between the biconnected elements of a graph are
called articulation points. Fig. 7 shows the difference between
the two concepts. Articulation points are shown in red.

Both of this concepts are interesting for our problem. When
we are looking for a particular object in an image, obtaining the

190



606 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 2, FEBRUARY 2009

Fig. 5. Three levels graph of the airport scene.

Fig. 6. Example of six levels graph of a water treatment plant 60-cm resolution image. (a) Original scene. (b) Graph of the scene.

Fig. 7. Example of connection and biconnection. (a) Connected components.
(b) Biconnected components.

graph corresponding to this object is difficult, since objects in
the neighboring area may be mixed up with it. It is therefore
interesting to decompose the obtained graph into connected

components in order to isolate the graph of the object of
interest. Fig. 8 shows an example of application.

In very large scenes, the extraction of connected components
may not be enough to isolate the objects of interest. The use
of biconnected components can then be used. Fig. 8 shows an
example of use of biconnected components.

C. Similarity Computation Algorithm

In Section IV-C, a generic similarity measure between graphs
has been presented. We have also shown that this similarity
measure can be computed by computing the maximum of a
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Fig. 8. Example of connected and biconnected component extracted from the
graph presented Fig. 6. (a) Connected component. (b) Biconnected component.

similarity measure over the set of the sets of possible matchings
between the nodes of two graphs. This is an NP-hard problem,
i.e., one cannot check in polynomial time that a solution is the
optimal one. This is due to the size of the solution space, which
grows exponentially with the size of the problem. Therefore,
any exhaustive search in the solution space has to be discarded.
However, using heuristics, algorithms can be proposed to find
an acceptable solution to the problem. In our case, we will use
the approach proposed by Sorlin and Solnon [29]: A first step
is performed using a greedy search, and the obtained result is
improved by a taboo metaheuristics.

1) Building the Search Space: In order to implement these
two algorithms, a representation of the search space under the
form of a metagraph has been built. Each node of this new
graph represents the association of a node of graph G with
a node of graph G′ of the same level of segmentation. Two
nodes of the metagraph are linked with an arc if the region of
graph G associated to the first node is linked to the region pf
graph G associated to the second node by the same relationship
which links the region of graph G′ associated to the first node
to the region of graph G′ associated to the second node. Also,
this relationship has to be different from DC. Finally, labels
are given to the nodes and arcs of the metagraph in order to
point which node and which arc is already part of the solution.
Using this structure, we can take advantage of the properties of
graphs: If one considers a solution of size n, the neighboring
solutions of size n + 1 are directly accessible. Indeed, one only
needs to take into account the set of metanodes linked by an
arc to the nodes which already belong to the solution. One can
also make sure that a connected graph will be matched with
another connected graph. Fig. 9 shows a simple example of
search graph: Each node of graph 1 is matched to the nodes
of graph 2 of the same level. These metanodes are then linked
if the relationships which links the origin and destination nodes
of graph 1 and graph 2 are of the same type.

2) Greedy Search Heuristics: We have seen that the com-
putation of the similarity between two graphs is equivalent to
maximizing (5).

Since the denominator of this equation is constant, one can
only consider the maximum of the numerator, which we call
score function. Furthermore, a potential measure will be used.
The potential will account for the output arcs which are not

Fig. 9. Example of how to build a search space. (a) Graph 1. (b) Graph 2.
(c) Search graph.

yet matched. It expresses the potential of a match to widen the
search in the solution space. The principle of the greedy search
is as follows.

1) Randomly choose a first match among those maximizing
the potential and add it to the empty solution.

2) While there are matches which can increase the score
and the maximum score is not reached, the following are
performed.
a) Build the list of candidate matches which increase the

score the most.
b) Among those, build the list of candidate matches

maximizing the potential.
c) Among those, randomly choose a match and add it to

the solution.
d) Go to step a).

This heuristic has two particularities. First of all, it is not
deterministic, since, in the case of equality between matches,
the choice is random. This allows one to run the algorithm
several times and keep the best solution. Second, it is a gradient
descent algorithm, since in each step, the steepest slope of
the score function is chosen. This is why this algorithm can
converge to a local minimum. Nevertheless, this is a good way
to get a first guess of the solution for large complex problems.
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Abstract

Alignment and parallelism are frequently found between objects in high resolution remote sensing
images, and can be used to interpret and describe the scenes. In this work, we propose novel
representations of parallelism and alignment as spatial relations. For the parallel relation we
propose a fuzzy relation which is defined between a linear object and a non linear object and
groups of aligned objects. For the alignment relation we propose a method for extracting the
groups of aligned objects from a labeled image. The alignment relation is also defined as a fuzzy
relation, and we distinguish two cases of alignment: local and global. In local alignment each
object of the group is aligned with its neighbors, while in the global alignment every object of the
group is aligned to all other members. To extract the locally aligned groups we make use of fuzzy
relative position measures. The locally aligned groups are candidates for being globally aligned
groups, which are determined using a graph-based approach. Illustrative examples on real images
show the power of description of combining these two relations for image interpretation.

Keywords: parallelism, alignment, fuzzy spatial relations, spatial reasoning, image
interpretation, high resolution remote sensing imaging

1. Introduction

Very high resolution remote sensing images (less than 1m per pixel) allow us to discriminate
different objects that compose a scene, such as buildings in a urban area or airplanes in an airport.
However, recognizing individual objects is not enough to determine the semantics of a complex
scene and to completely interpret it. Semantical scene understanding involves the assessment of
the spatial arrangement of objects. Using spatial relations does not only help us to discriminate
the objects in the scene [1], but it also allows us to distinguish between different interpretations
of two scenes with similar objects but different spatial arrangements [2]. Some examples of the
use of spatial relations can be found in the domain of medical images to recognize different brain
structures [3, 4], in image interpretation to provide linguistic scene descriptions [5], in remote
sensing images to classify or mine images [2, 6], in GIS applications to monitor land use [7] and
cover changes [8].

The spatial relations that are usually used to describe the spatial arrangement between image
regions are topological relations as in [2, 7–9], directional relations such as “to the right of” in
[2, 4, 5, 10] or distance relations [2, 4, 5, 11]. However, relations such as alignment have not been
used so far in these works, although they can play an important role in image description. This is
the case for instance in cartography, where it is necessary to find groups of aligned buildings for
map generalization [12]. As another example, in object detection, complex semantic classes such
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as parking areas (car parking lots, ports, truck parking lots or airports) comprise aligned groups
of vehicles. Therefore, the identification of aligned groups of transport vehicles can be useful for
detecting instantiations of these complex classes. Alignment is often linked to the parallel relation.
For example, in object recognition the aligned groups of airplanes in an airport are parallel to the
terminal buildings, or the aligned groups of boats in the ports are parallel to the deck. Another
example is the determination of urban spatial patterns like groups of aligned houses parallel to
other aligned groups of houses in residential areas.

In this paper, we propose representations of the parallelism and alignment relations as spatial
relations between objects. Our objective is to define these relations taking into account their
semantics. However, these relations are vague and imprecise when they are evaluated between ob-
jects of different sizes for the case of alignment, and between objects of different spatial extensions
for the case of parallelism. Therefore we propose to define them as fuzzy spatial relations to cope
with such imprecisions.

This paper is organized as follows. Section 2 reviews some of the models of alignment and
parallelism in computer vision. Section 3 introduces the definitions of local alignment and global
alignment. A method for extracting the locally aligned groups is then proposed. In this method
we construct a neighborhood graph of the objects of the image, and its dual graph where we
incorporate information about the relative direction of the objects, evaluated using fuzzy measures
of relative position. The groups of objects satisfying the fuzzy criterion of being locally aligned are
extracted from the dual graph. These groups are the candidates for being globally aligned. Section
4 discusses the issues related to the definition of the parallel relation when dealing with objects
or groups of aligned objects. An original definition of parallelism is then proposed, matching the
requirements. Finally, in Section 5 we apply the relations to objects in satellite images to illustrate
their behavior and their usefulness in scene understanding.

2. Alignment and parallelism in computer vision

Both parallelism and alignment between low level features have been widely studied in com-
puter vision. Some examples are parallelism between segments [13–19], alignment between groups
of points [20, 21] and alignments between linear segments [13, 20] as collinearity on digital images.
Most of these works are inscribed within the framework of perceptual organization. Their first
objective is to find how to organize low level features, such as edge segments, into groups, such as
aligned segments or parallel segments. The groups are evaluated according to their perceptually
significance based on the grouping laws of the Gestalt theory [22, 23]. Their second objective is
to differentiate the groupings that arise from the structure of a scene from those that arise due to
accidents of view point or position [13].

The objective of perceptual organization in computer vision and our objective are different.
Perceptual organization deals with how these relations take place among low level features and
their meaningfulness according to the image’s structure, while we are interested in defining these
relations for objects in the image taking into account their semantics. Anyway, it is important
to review the work that has been done on studying these relations as grouping laws between low
level features in digital images, in order to understand how these relations have been modeled.

Parallelism between two linear segments is usually modeled as a relation that should satisfy
three constraints. The first one is that both segments should have a small angular difference. The
second one is that the perpendicular distance between the two segments should be small and the
last one is that there should be a high overlap between them [14]. There exist different approaches
to integrate these three constraints into a model and measure the meaningfulness of the relation.
Lowe [13] was one of the first to model parallelism to perform perceptual grouping: for every
couple of linear segments having a perpendicular separation d and an angular difference θ, he
assigns a significant value to establish that it has not been originated by an accident of viewpoint.
The significant value is used to determine the expected number of lines for a given perpendicular
separation and an angular difference. In fact, this value is proportional to the prior probability
of appearance and it is inversely proportional to the angular difference and the perpendicular
separation. In [14] the constraint about overlapping is introduced and it is determined by the
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orthogonal projection of one segment over the other and vice-versa. The meaningful segments are
then obtained by applying a threshold on the measured values of the constraints. Fuzzy approaches
have been proposed in [16–18, 24, 25], leading to a measure of the degree of parallelism between
two linear segments, in which trapezoid type functions are used to evaluate to which degree the
three constraints are satisfied. The three degrees are combined in a conjunctive way.

Parallelism between curves has been modeled as a type of symmetry [15, 16]. In [15] the authors
consider that two curves are parallel if their respective orthogonal distances from the symmetry
axis are almost equal. In [26] and [27] parallelism is modeled as a matching problem where two
curves are parallel if there is a point-wise correspondence. In both works the parallelism is treated
as a shape matching problem.

Previous works focused on parallelism between crisp linear segments. However, when dealing
with objects extracted from images, it is important to consider parallelism between fuzzy linear
objects. Indeed, the object extraction processes can introduce imprecision, and therefore we are not
always dealing with crisp linear objects or segments. In Sec. 4 we will give some definitions about
parallelism between fuzzy linear objects. The definitions of parallelism presented in this paper
differ from those of the previous works in the sense that we are defining the relation considering
its semantics, and we are not worried about whether or not the detected parallelism is an accident
of the view point or position. We are interested in the conditions that have to be satisfied to
decide whether two objects are parallel or not.

For the case of alignment, several methods to determine the alignment between points methods
relying on the Hough transform [20] or the Radon transform [28] have been proposed. Other exam-
ples are the identification of aligned segments which have the same orientations as the alignment
[13, 18, 20, 21, 24]. However, alignment extraction as a high level feature has been less studied.
One example is the work of [29], where an algorithm to detect aligned groups of buildings in maps
is presented. In this algorithm buildings with aligned barycenters are extracted, and the quality
of the alignments is evaluated based on the criteria of proximity and similarity laws of Gestalt
theory.

The above mentioned methods for determining alignment focused on extracting groups of ob-
jects with aligned barycenters. Consequently, it is not possible to apply them directly to determine
if a group of heterogeneous objects (according to shape and size) is aligned, since neither the size
nor the shape of the objects are considered. An example of this will be given in Sec. 3.1. Similarly
as for parallelism, the previously proposed alignment relations have not been extended to deal
with fuzzy objects.

Due to the fact that parallelism and alignment in computer vision have been studied between
low-level features in the perceptual organization domain, they have been treated in an independent
manner, and they are used to organize low level features but they are not combined. However,
when dealing with objects and observing these relations as spatial relations, it is interesting to
combine them in order to determine when two groups of aligned objects are parallel, or when a
group of aligned objects is parallel to another object. These kinds of combinations give us more
information about the scene and can be meaningful for the description. This point will be further
developed in the following sections.

3. Alignment

Alignment can be defined as the spatial property possessed by a group of objects arranged in
a straight line2. As it was highlighted by the Gestalt theory, alignment should be seen as a whole
[20]: if we observe each element of the group individually, then the alignment property is lost.
Having to look at it as a whole makes alignment detection a difficult task, since in order to detect
an aligned group of objects we have to identify its members, but to know if an object belongs to
an aligned group the alignment has to be already identified. In this part we study the different
approaches to model alignment, and introduce the notions of local and global alignment.

2Definition taken from ThinkMap Visual Thesaurus http://www.visualthesaurus.com/
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3.1. Different approaches to model alignment
For the case of a group of points in R2 there are two equivalent strategies for verifying whether

they are aligned. Let A = {a1, . . . , an} be a group of points in R2. A is aligned if and only if:

(i) there exists a line L that intersects all the points, or

(ii) there exists an angle θ ∈ [0, π) such that for every pair of points ai and aj (i 6= j), aj is
located in direction θ or θ + π from ai with respect to the horizontal axis.

The first strategy has been used to identify if a group of points is aligned in an image, by
considering that points should fall into a strip [30], the thinner the strip the better the alignment.
Extending the first definition to identify a group of aligned objects can be done by using objects’
barycenters. Unfortunately this will only be appropriate for objects of similar sizes (see Fig. 1)
and approximately convex. Another possibility is to search a thin strip where all the objects fall
into, but the width of the strip will depend on the objects’ sizes. Thus the notion of falling into a
thin strip is not appropriate for objects with different sizes.

(a) Original image. (b) Segmented objects. (c) Barycenters of objects in (b).

Figure 1: Example of an aligned group of objects of different sizes and with non-aligned barycenters.

The difficulty of extending the second strategy relies in determining the angle between two
objects. One alternative, which is the one proposed in this work, is to use measures of relative
position used in spatial reasoning. Before entering into the details of the method, we introduce
the notion of orientation histogram, inspired by the angle histogram of [31]. This notion is a
fundamental concept for our method.

3.2. Angle and orientation histograms
Angle histograms were introduced in [31]. They can be interpreted as a function that captures

the directional position between two objects. Let us assume we have two objects A and B defined
by two regions in the image space I, that we also denote by A and B. The angle histogram from
A to B is obtained by computing, for each pair of points pa ∈ A and pb ∈ B, the angle between
the segment joining them and the horizontal axis, denoted by ∠(pa, pb) [32]. Angles are organized
in a histogram normalized by the largest frequency:

HA(B)(θ) =

∑
pa∈A,pb∈B|∠(pa,pb)=θ 1

maxφ∈[0,2π)

∑
pa∈a,pb∈b|∠(pa,pb)=φ 1

. (1)

To determine if an object A is in a given direction with respect to an object B (for example
“right of”), we can compute the angle histogram HA(B) and compare it with a template for the
relation “right of” by using for instance a conjunctive operator or the compatibility between the
computed histogram and the template [31]. Angle histograms are also formalized for fuzzy objects.
Given two fuzzy objects A and B defined through their membership functions µA : I → [0, 1] and
µB : I → [0, 1] in the image space I, respectively, it is possible to define the angle histogram
between A and B by considering the membership of each point to the fuzzy set:

HA(B)(θ) =

∑
pa,pb∈I|∠(pa,pb)=θ µA(pa) ∧ µB(pb)

maxφ∈[0,2π)

∑
pa,pb∈I|∠(pa,pb)=φ µA(pa) ∧ µB(pb)

, (2)
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where ∧ denotes a t-norm and ∨ a t-conorm. When µA and µB are crisp, (2) and (1) are equivalent.
In the following, ∧ denotes a t-norm and ∨ a t-conorm. Angle histograms have proved to be
an adequate way for evaluating the directional spatial relation between two objects [31] since
they take into account the shape of the regions. In addition, they are invariant to simultaneous
translation, scaling and rotation of both objects. They are not symmetrical, but they satisfy:
HA(B)(θ) = HB(A)(θ + π).

Since we are interested in the orientation between two objects, we introduce the notion of
orientation histogram, which is simply an angle histogram where the angles are computed modulo
π and its support has a length equal to π:

O(A, B)(θ) =

∑
pa,pb∈I|mod(∠(pa,pb),π)=θ µA(pa) ∧ µB(pb)

maxφ∈[0,π)

∑
pa,pb∈I|mod(∠(pa,pb),π)=φ µA(pa) ∧ µB(pb)

. (3)

The orientation histogram is a fuzzy subset of [0, π[ that represents the orientation between two
objects, it preserves the same properties as the angle histogram and, in addition, is symmetrical.

3.2.1. Similarity degree for orientation histograms
There are several ways to define a degree of similarity between orientation histograms. One

possibility is to interpret the orientation histograms as fuzzy sets and use similarity measures based
on aggregation [33]. Another possibility is to interpret the orientation histogram as a function
and use a similarity degree based on distance between functions. We use here a simple similarity
degree based on intersection, but other similarity measures are possible. More information on
distances between histograms and similarity measures between fuzzy sets can be found in [33–35].

A degree of similarity between two orientation histograms can be defined as the maximum
height of the fuzzy intersection of the two orientation histograms [33]. Let O(A, B) and O(C, D)
be two orientation histograms. The degree of similarity between them is given by:

sim(O(A, B), O(C, D)) = max
θ∈[0,π)

[O(A, B)(θ) ∧ O(C, D)(θ)] . (4)

In this measure, the possibility for each angle is aggregated in a conjunctive way, and we take its
maximum value. In the case were the orientation histograms do not intersect then the similarity
value is 0.
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Figure 2: (a) Objects. (b) Orientation histograms of the objects in (a).

Figure 2(b) shows the two orientation histograms computed for the objects of Fig. 2(a). Both
histograms have a well defined maximum, showing a strong main orientation, and these maximum
values are close to each other. Therefore a high similarity value is expected. However, if the
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min operator is used as a t-norm in (4), the similarity value between the two histograms is 0.67.
This non-high value is due to the comparison of the value for each angle separately, since the
aggregation is done for every angle. However, in this context referring to an orientation equal to
an angle θ actually represents the quantity “approximately θ”. Therefore, in order to compare if
two orientation histograms are similar, it is important to consider the imprecision that is linked
to the comparison of two angles that are approximately the same. When a fuzzy morphological
dilation [36] is performed on an orientation histogram using a structuring element ν0, then the
high values of the histogram will be propagated to the similar angle values according to ν0. The
structuring element ν0 is designed such that ν0(θ − θ̃) represents the degree to which θ̃ and θ are
“approximately” equal, and in our experiments we modeled ν0 as a trapezoid function:

ν0(θ) =





1 if |θ| ≤ t1
t2−|θ|
t2−t1

if t1 < |θ| ≤ t2

0 if |θ| > t2,

(5)

where t1 and t2 represent the parameters of a trapezoid function. The parameters t1 and t2 are
related to the imprecision linked to computing angles in a discrete grid, as is the case for images.
This imprecision is a function of the distance between the points for which the angle is computed:
the greater the distance between the points, the more precise is the calculation. However, in our
experiments, since most of the time we are dealing with objects which have a similar distance
between them, we have chosen to use:

t1 = arcsin

(
1

0.5daverage

)
(6)

t2 = arcsin

(
1

0.25daverage

)
(7)

where daverage is the average distance in pixels between the “neighbor” object’s barycenters. This
values have been used in all experiments, and did not required any fine tuning of the parameters.

By performing a morphological dilation of O(A, B) with the structuring element ν0 we introduce
the imprecision to all the angles in O(A, B) (as in [37]). For this reason, the similarity should be
computed using the dilated orientation histograms, and (4) becomes:

sim(O(A, B), O(C, D)) = max
θ∈[0,π)

[Dν0
(O(A, B))(θ) ∧ Dν0

(O(C, D))(θ)] , (8)

where Dν0
(O(X, Y )) is the dilation of O(X, Y ) by a structuring element ν0 and it is given by

Dν0
(µ)(θ) = supθ̃∈[0, π[ min(µ(θ̃), νx(θ − θ̃)) [36].
Figure 3(a) shows the result of performing a morphological dilation of the orientation his-

tograms of Fig. 2(b). The parameters of Eqs. 6 and 7 are t1 ≈ 0.07 and t2 ≈ 0.12 for the
structuring element. The similarity value between the histograms obtained with Eq. (8) is 0.93
which is more consistent with the perceived orientation of the objects than the value obtained by
applying Eq. (4).

When orientation histograms are not similar (see Fig.4) we obtain a zero similarity value, as
desired.

This measure of similarity can be extended to compare several orientation histograms. Let
{O(Ai, Aj)}N

i=0,j 6=i be a set of orientation histograms, the similarity degree between them is equal
to:

sim(O(A0, A1), . . . , O(Ai, Aj), . . . O(AN , AN−1)) = max
φ∈[0,π[

N∧

i=0,j 6=i

Dν0
(O(Ai, Aj))(φ) (9)

3.3. Definition and identification of aligned groups of objects
We consider a set of objects A = {A0, . . . , An} and want to determine the subsets of aligned

groups of A. For the sake of clarity we will call them globally aligned groups. First we identify the
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Figure 3: (a) Orientation histograms of the objects in Fig. 2(a) and dilated orientation histograms. (b) Structuring
element used for the dilation.
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Figure 4: (a) Objects. (b) Orientation histograms of the objects (a) and dilated orientation histograms.

locally aligned groups (defined in Sec. 3.3.2), and the set of locally aligned groups will be denoted
by L. For each locally aligned group Si ∈ L we measure the degree of global alignment (defined in
Sec. 3.3.1). If this degree is lower than a user acceptance value α, then elements of the group will
be deleted until the degree is equal or greater than α or until the group has less than 3 elements.
In the case where the degree is greater than α, the group Si will be added to the set of aligned
groups G. A last step of addition and fusion of the groups is done to obtain the largest possible
globally aligned groups. This method is illustrated in Fig. 5. In the following sections we detail
each step of the method.

3.3.1. Globally aligned groups
Before defining a globally aligned group of objects, we define two preliminary concepts. Let

S be a group of objects, and A, B ∈ S, we define the Neigh(A, B) relation as being satisfied if
and only if B ∩ A = ∅ and B ∩ N(A) 6= ∅ where N(A) is defined as a neighborhood of A. One
possible choice for the neighborhood of an object is N(A) = Nd(A) where Nd(A) is the Voronoi
neighborhood constrained by a distance d. Other possible choices will be discussed in Sec. 3.3.3.

Definition 3.1. A group S is called connected by the Neigh relation if for every A, B ∈ S, there
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Figure 5: Proposed method for determining the aligned groups of objects.

exist C0, . . . CM objects in S, such that C0 = A, CM = B and for every m = 0, . . . , M − 1, the
relation Neigh(Cm, Cm+1) is satisfied.

Returning to the discussion of Sec. 3.1, the group S is globally aligned if the following conditions
are satisfied:

(i) S is connected by the Neigh relation,

(ii) |S| ≥ 3, and

(iii) there exists θ ∈ [0, π[ such that for every A, B ∈ S, A is able to see B in direction θ or θ + π
with respect to the horizontal axis.

The first condition ensures that the group is not “divided”, for instance the red objects in Fig. 6(a)
do not satisfy this condition and can be considered as two groups. The second condition states
that an aligned group should have at least 3 elements. To verify the third condition it would be
necessary to compare all the orientation histograms between any two objects of S. Unfortunately,
this measure is very restrictive, and a more flexible measure is to consider that all the orientation
histograms of O(Ai, S \ {Ai}) are similar for all Ai ∈ S. Figure 7 shows the dilated orientation
histograms Dν0

(O(Ai, S \ {Ai})) and the dilated orientation histograms between the objects of
the group in Fig. 6(b). For each orientation histogram we used the same structuring element ν0.
We can notice that for the dilated histograms Dν0

(O(Ai, S \{Ai})) it is possible to see a tendency
towards a similar angle, while for the dilated orientation histograms Dν0

(O(Ai, Aj)) this is not
the case. This is reflected when histograms are aggregated using the t-norm of Lukasiewicz in Fig.
7(c) where the aggregation of Dν0

(O(Ai, S \ {Ai})) results in a function with a maximum of 0.81,
while the aggregation of Dν0

(O(Ai, Aj)) produces a constant function equal to zero, which is not
meaningful here. One should notice that when using the conjunction of the dilated orientation
histograms Dν0

(O(Ai, Aj)), if two pairs of objects do not have a similar orientation then the whole
conjunction is equal to zero. However, when using the dilated histograms Dν0

(O(Ai, S \{Ai})) the
dissimilarity between the orientations of two pairs of objects will not affect the whole conjunction,
since it is a comparison between the orientations of the whole group with respect to its members.

Thus, it is possible to define the degree of global alignment as follows:

Definition 3.2. Let S = {A0, . . . , AN}, with N ≥ 3, be a group of objects in I, connected by the
Neigh relation. Then, the degree of global alignment of S is given by:

µALIG(S) = sim (O(A0, S \ {A0}), . . . , O(AN , S \ {AN})) . (10)
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(a) Groups should be connected, the red group
should be considered as two groups.

(b) An object of the group should see the other
members in the alignment orientation.

Figure 6: Considerations for an aligned group.
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Figure 7: Dilated orientation histograms for objects of Fig. 6(b) and their aggregation using the t-norm of
Lukasiewicz.

3.3.2. Locally aligned groups
We can say that a group S is locally aligned if it satisfies:

(i) for every A ∈ S the elements in the neighborhood N(A) in S are aligned, and

(ii) it is connected by the Neigh relation.

For the first condition, we will only verify for simplicity that for every couple of elements B, C ∈ S
belonging to N(A), the orientations O(A, B) and O(A, C) are similar. Thus, we can define the
degree of locally alignment as follows:

Definition 3.3. Let S = {A0, . . . , AN}, with N ≥ 3, be a group of objects in I, connected by the
Neigh relation. The degree of locally alignment of S is given by:

µLA(S) = min
X,Y,Z:Neigh(X,Y )∧Neigh(Y,Z)

sim(O(X, Y ), O(Y, Z)). (11)

We will say that a group of objects S is locally aligned to a degree β if µLA(S) ≥ β.
The preceding definition can be summarized by saying that a group S with |S| ≥ 3 is locally
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aligned to a degree β if it satisfies the following relations:

R1 : ∀X, Y, Z (Neigh(X, Y ) ∧ Neigh(Y, Z)) ⇒ (sim(O(X, Y ), O(Y, Z)) ≥ β) (12)

R2 : ∀A, B, ∃X0, . . . , Xm such that X0 = A, Xm = B and

(
m−1∧

i=0

Neigh(Xi, Xi+1)

)
(13)

3.3.3. Other neighborhood choices
The choice Nd(A) in Sec. 3.3.1 as the Voronoi neighborhood of A constrained by a distance d

was motivated by the fact that in a group, any subgroup of aligned objects should be “consecutive”
(see Fig. 8), and that successive objects should be close to each other. Nevertheless, there are other
possibilities for choosing the neighborhood N(A). For instance, we can consider the neighborhood
of objects that are “near” A which can be defined by the fuzzy morphological dilation Dd

ν(A) of A
, where νd is a fuzzy structuring element representing the notion of a distance “less than” d. For

Figure 8: Illustration of a non-consecutive group. In a consecutive group their should be a succession of elements,
which is not the case for the blue group, since the yellow object breaks the succession.

a fixed νd the neighborhood N(A) is also univocally defined. This choice gives a more restrictive
condition of locally alignment since the neighborhood contains more objects that should verify
the alignment conditions, and it can also be used in the case where A and B are fuzzy objects.
A fuzzy object is defined as a fuzzy set over the image space (usually Z2 for 2D digital images),
and the membership function of the set represents the imprecision in the spatial extent of the
object [1]. In the following of this subsection we assume that we are dealing with fuzzy objects
A and B defined through their membership functions µA and µB , since all equations that will be
presented are valid for crisp and fuzzy objects. When considering a fuzzy neighborhood, the Neigh
relation becomes also fuzzy, and we denote by µNeigh(A, B) its degree of satisfaction. Similarly
to the degree of adjacency in [1], the degree of µNeigh is defined as a conjunction of the degree of
intersection between µA and µN(B), and µB and µN(A). Therefore, the degree of neighborhood is
defined by:

µNeigh(A, B) = µqint(µA, µB) ∧ µint(µN(A), µB) ∧ µint(µN(B), µA) (14)

where µint and µqint are a degree of intersection and non-intersection, respectively [1]. To have
a symmetrical relation we consider the intersection between µA and µN(B), and between µB

and µN(A). However, in the case where Dd
ν(A) with νd symmetric is used as neighborhood,

µint(µN(A), µB) and µint(µN(B), µA) are equal, and therefore it is only necessary to verify one of
the two conditions.
Consequently, the relation “connected by Neigh” also becomes a fuzzy relation denoted by µconn

and the degree of connectedness in a group S between two objects A, B in S is defined as in [38]
by:

µconn(A, B) = max
p∈Pab

[
min

1≤i≤lp
µNeigh(C

(p)
i−1, C

(p)
i )

]
(15)

where p is a list of objects 〈C(p)
0 = A, C

(p)
1 , . . . , C

(p)
lp

= B〉 in S, called path, and Pab is the set
of all the paths from A to B in S. The degree of connectedness of a group can be defined as the
minimum degree of connectedness between its elements:

µconn(S) = min
A,B∈S

µconn(A, B) (16)

When using a fuzzy neighborhood, the definitions of globally aligned and locally aligned have
to be revised. The degree of global alignment of a group of objects S = {A0, . . . , AN} and with
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N ≥ 3 becomes:

µALIG(S) = µconn(S) ∧ sim (O(A0, S \ {A0}), . . . , O(AN , S \ {AN})) (17)

This definition represents a conjunctive combination of the condition of being connected by the
neighborhood relation and the similarity among the orientation histograms. When using a crisp
neighborhood this definition is equivalent to the one given in Def. 3.1, where the condition of
satisfying the relation of connection by the neighborhood is implicit in the definition.
In a similar way, it is possible to extend the definition of locally alignment to:

µLA(S) = µconn(S) ∧
[

min
X,Y,Z

(sim(O(X, Y ), O(Y, Z)) ∧ µconn({X, Y, Z}))

]
. (18)

Again, the equation represents the conjunction of combining two conditions, the first one is the
condition of being connected and the second one represents that objects X and Z belong to the
neighborhood of Y , and that the orientation histograms O(X, Y ) and O(Y, Z) should be similar.
In the case where a crisp neighborhood is used, we obtain the same degree as in Def. 3.3.

3.3.4. Identification of locally aligned groups
In this section we explain how it is possible to extract the locally aligned subgroups from a

group of objects. For clarity purposes we first use a crisp neighborhood, and in the next section
we explain how the algorithm is extended to cope with fuzzy neighborhoods.
As discussed in Sec. 3.3.2, the notion of local alignment strongly depends on the notion of neigh-
borhood, since an aligned group should be connected by the Neigh relation. Therefore, we propose
to construct a neighborhood graph GN to obtain the information of which objects are connected
via the Neigh relation. In a neighborhood graph GN = (V, E) the vertices represent the objects
of the group, and there is an edge between two vertices if and only if the corresponding objects
are neighbors. Notice that only the connected subsets of three vertices X, Y and Z in GN which
share a common vertex, for example Y , satisfy:

Neigh(X, Y ) ∧ Neigh(Y, Z) (19)

These connected subsets are called triplets. According to R1, only the triplets {X, Y, Z} that
satisfy (8):

sim(O(X, Y ), O(Y, Z)) ≥ β (20)

are aligned and can belong to a group which is locally aligned to a degree β. Triplets can be easily
identified as the edges of the dual graph, when the dual graph is constructed in the following
manner. The dual graph is denoted by G̃N = {Ṽ , Ẽ} where each vertex Ṽi represents an edge in
the graph GN . An edge exists between two vertices Ṽi and Ṽj of G̃N if the two corresponding
edges of the graph GN have a common vertex. If, additionally, we attribute to each edge (i, j) the
similarity degree between the orientation histograms of Ṽi and Ṽj that we denote by s̃ij , then it is
possible to verify if relation R1 holds for its corresponding triplet. Figure 9 shows an example of a
neighborhood graph and its dual graph. Notice that the edges of G̃N with a high value represent
the triplets of objects with a similar orientation histograms. For instance, in the dual graph the
edge between the nodes (1 - 2) and (2 - 3) has a similarity value of 1, this edge corresponds to the
objects labeled 1, 2 and 3 of Fig. 9(a). In a similar way, edges with a low value represent objects
which are not aligned, for example in the dual graph the edge between the nodes (1 - 2) and (6 -
2) has a similarity value of 0.11 and corresponds to the objects labeled 1, 2 and 6, which do not
form a globally aligned triplet.

Returning to the conditions of local alignment R1 (12) and R2 (13), the first one states that
triplets should be globally aligned, and the second one that the group should be formed by con-
nected objects according to the Neigh relation. Then a group S satisfies these relations if and

11

203



1

2

3

4

5

6

(a) Labeled objects.

1

5

2

3

4

6

(b) Neighborhood graph of (a).
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(c) Dual graph of (b).

Figure 9: Neighborhood graph and dual graph of a group of objects.

only if the subset S̃ ⊆ Ṽ which represents the dual of S satisfies the following relations:

R̃1 : ∀Ṽi, Ṽj Connected(Ṽi, Ṽj) ⇒ (s̃ij ≥ β) (21)

R̃2 : ∀Ṽi, Ṽj ∃Ũ0, . . . ŨK for K ≥ 1 such that Ũ0 = Ṽi, ŨN = Ṽj

and
K−1∧

k=0

Connected(Ũ0, Ũk),
(22)

where Connected(Ũ , Ṽ ) is true if there exists an edge between Ũ and Ṽ . Condition R̃2 expresses
that S̃ should be connected, since if S̃ is not connected then S is not connected. Therefore, a
locally aligned group is a subset S ⊆ V for which its dual set S̃ ⊆ Ṽ is connected in G̃ and the
value of all the edges joining the vertices within S̃ is greater than or equal to β.
Algorithm 1 can be used to extract the S̃i ⊂ Ṽ corresponding to the dual sets of the locally aligned
sets Si ⊂ V. First the connected components of a graph G̃TH are computed and stored in C. G̃TH

is a non-attributed graph containing the same vertices as G̃ and there is an edge between two
vertices if the edge in G̃ has a degree greater than or equal to β. Then, for each component Ck we
obtain the minimum value of its edges in G̃ that we call consistency degree of Ck and is denoted
by cons(Ck):

cons(Ck) = min{s̃ij |Ṽi, Ṽj ∈ Ck}
If cons(Ck) < β then Ck does not satisfy R̃1, thus vertices are removed until cons(Ck) ≥ β. If in
the process of vertex removal Ck becomes disconnected, then each of the connected components of
Ck is treated separately. The vertices which are removed are the ones having more conflict with
their neighbors in Ck. We say that two connected vertices Ṽi and Ṽj are in conflict if s̃ij is close
to zero, that is if the corresponding orientation histograms of both vertices are not similar. The
conflict of a vertex Ṽt with its neighbors in Ck is measured by using what we call the degree of the
vertex in Ck:

deg(Ṽt) =

∑
Ṽj∈Ck

s̃tj

|{(i, j)|Ṽj ∈ Ck}|
. (23)

This degree represents the average edge value over all the edges connected to Ṽt. It is clear that if
Ṽt is in conflict with several of its connected vertices in Ck then deg(Ṽt) will be close to 0, and it
will be close to 1 if there is no conflict. Then the conflict of a vertex will be given by 1 − deg(Ṽt).

Fig. 10 shows an example where there is a conflict between the vertices of a connected com-
ponent for β = 0.8. Fig. 10(b) shows the dual graph of the objects, and Fig. 10(c) shows the
thresholded graph, where there is a connected component with three vertices that we denote by
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C0. The consistency degree of C0 is cons(C0) = 0.05, which is inferior to β. The conflict of the
nodes (1-2), (2-3) and (2-4) are 0.64, 0.49 and 0.08, respectively. Therefore, the nodes (1-2) and
(2-3) have a conflict with their neighbors in C0. To reduce the conflict we remove the node (1-2)
since it is the one having the higher conflict. By removing this edge the conflict is solved and the
consistency degree of C0 becomes cons(C0) = 0.89, which is higher than β.

1

3

4 2

(a)

1−2

1−3 2−3

2−4

0.01 0.05

0.87

0.97

(b) G̃

1−2

1−3 2−3

2−4

(c) G̃TH

1−2

2−3

2−4

0.05

0.87

0.97

(d) C0

Figure 10: (b)Dual graph of objects in (a). (c) Thresholded dual graph for β = 0.8. (d) Vertices of the connected
component of G̃TH seen by G̃.

Input: Dual graph G̃, β
Output: L
Create G̃TH = (Ṽ , ẼTH) where ETH = {(i, j) ∈ E|ẽij ≥ β};1

Find C the set of connected components of G̃TH ;2

foreach Ck ∈ C do3

Let cons = min{s̃ij |Ṽi, Ṽj ∈ Ck} ;4

while cons < β and |Ck| ≥ 2 do5

foreach Ṽt ∈ Ck do6

degt =

∑
Ṽj∈Ck

s̃ij

|{(i,j)|Ṽj∈Ck}|
;7

end8

Delete from Ck the Ṽj for which Ṽj = minṼi∈Ck
degi;9

if Ck is disconnected in G̃TH then10

Let D = {D0, . . . , DL} the connected components of Ck ;11

Ck = D0 ;12

for l = 1 to L do13

Add Dl to C;14

end15

Update cons = min{s̃ij |Ṽi, Ṽj ∈ Ck};16

end17

end18

if cons ≥ β then19

Add Ck to L;20

end21

end22

Algorithm 1: Algorithm for finding locally aligned groups L from G̃.

3.3.5. Extension for fuzzy neighborhoods
If instead of having a crisp Neigh relation we have a fuzzy relation µNeigh, the procedure

should be adapted for the extraction of the locally aligned groups.
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When constructing the neighborhood graph GN each edge should be attributed with the degree
of satisfaction of µNeigh. The notion of triplets also becomes fuzzy, and the degree to which three
vertices X, Y and Z form a triplet is given by the degree of connectedness of {X, Y, Z} using Eq.
(16).
The degree of connectedness is taken into account in the construction of the dual graph G̃N , and
only the triplets with a connectedness value greater than the user defined acceptance value β will
be considered. Each edge (i, j) between the vertices Ṽi and Ṽj of the dual graph will be attributed
with the degree:

s̃ij = sim(O(X, Y ), O(Y, Z)) ∧ µconn({X, Y, Z}), (24)

where X, Y and Z build the vertices triplet represented by the vertices Ṽi and Ṽj .
The extraction of locally aligned groups is performed by applying Algorithm 1 on the dual

graph. Let S be a resulting group. Due to the choice of construction of the dual graph, we can
guarantee that, for every pair of elements A, B ∈ S the degree µNeigh(A, B) is greater than β,
since only the edges satisfying this condition were used for the construction of the dual graph.
Therefore, the degree of connectedness of the group is µconn(S) ≥ β. It is straightforward to see
that S satisfies the second condition of Eq. (18) since this condition is imposed by the choice of
s̃ij . Hence, the resulting groups are locally aligned to a degree greater than β according to (18).

3.3.6. Candidates for globally aligned groups
The locally aligned groups L to a degree β are the possible candidates for being globally aligned

groups to a degree α, for α ≤ β. The evaluation is performed by measuring the degree of global
alignment using Eq. (11). Usually the locally aligned groups are globally aligned. However there
are cases as the one shown in Fig. 11 where a locally aligned group is not globally aligned.
To increase the degree of global alignment of a group S we divide the group by eliminating
the vertices in S̃ with the minimum vertex degree (Eq. 23) in S̃, we repeat this step until
µALIG(S) ≥ α. If the degree of all vertices in S̃ is equal to one, and µALIG(S) < α it means
that a lot of imprecision was introduced for the similarity computation, and the measurement of
similarity is very permissive, thus the whole process should be repeated using a ν0 with a tighter
support in (9).

(a) Locally aligned group, that is not glob-
ally aligned.

(b) Corresponding
dual graph.

(c) Resulting groups after group division.

Figure 11: (a)Locally aligned group which is not globally aligned. (b) Its dual graph, where the objects are labeled
from 1 to 7 (left to right). (c) Resulting groups obtained after solving the conflict.

14

206



3.3.7. Adding more elements to the group
Once the globally aligned groups of objects are identified it is possible to add new objects to

the group or fuse two globally aligned groups to obtain a larger globally aligned group. For each
group Si we perform two morphological directional dilations of the group in the directions θ and
θ + π, where θ is the orientation of the alignment (the angle which maximizes the conjunction
of the orientation histograms O(Ai, S \ {Ai})). These dilations will be denoted by Dνθ

(Si) and
Dνθ+π

(Si). The directional dilation of a fuzzy set µ in a direction ~uθ is defined as [36]:

Dνθ
(µ)(x) = sup

y
min[µ(y), νθ(x − y)] , (25)

where νθ is a fuzzy directional structuring element chosen so as to have high membership values in
the direction ~uθ and its value at a point x = (r, α) (in polar coordinates) is a decreasing function
of |θ − α| modulo 2π. The fuzzy sets Dνθ

(Si) and Dνθ+π
(Si) represent the regions of space that

are in direction θ and θ + π of Si. An object A which satisfies the Neigh relation with one of the
members of Si and which is included in Dνθ

(Si) or Dνθ+π
(Si) with a degree greater than or equal

to β (that is µinclude(A, Dνθ
(Si) ∪ Dνθ+π

(Si)) ≥ β, where µinclude denotes a degree of inclusion
[1]) is added to Si, since is in the same direction as the orientation alignment and it is connected
to the group. If a whole group Sj is included in Dνθ

(Si) or Dνθ+π
(Si) with a degree greater than

β and one of the elements of Si is connected to one of the members Sj and both groups have a
similar orientation, then both groups are fused into one.

(a) (b) (c) (d)

Figure 12: (a) Labeled image. (b) Locally aligned group. (c) The region seen by the group of (b) in the direction
of the alignment (white = high value of visibility). (d) Group obtained after adding new elements.

Figure 12 shows an example of extracting the locally aligned groups of Fig. 12(a). The resulting
group is locally aligned to a degree 0.9, and it is globally aligned to a degree 0.85. This group is
extended to add more elements to the group resulting in a larger group with a degree of global
alignment of 0.8.

3.4. Stability with respect to segmentation errors
One interesting feature of our approach is that it is robust to the quality of the segmentation

of the objects. This property is particularly important in real applications where it is difficult to
guarantee that all objects have been segmented and that the segmentation is accurate. Figure
13 shows two examples of the stability of the algorithm with respect to segmentation errors such
as the absence of an object, or the merging of an undesired region to one of the objects. Figure
13(b) shows a segmentation of the houses of Fig. 13(a), which is almost correct, except for some
false detections and a missing house. Two of the aligned groups of objects extracted from this
segmentation are shown in Fig.13(c). Actually more groups are extracted by the algorithm but for
the sake of clarity only a few groups are shown. Figure 13(d) shows another segmentation which
was manually modified to introduce errors: two missing houses, and one of the houses is merged
with other regions. Figure 13(e) shows two of the retrieved aligned groups, which correspond to
the groups found in Fig.13(c). We can see that the blue group in Fig. 13(e) is retrieved even with
the absence of two objects, and that the orange group is retrieved although the center of mass of
one of its members has been displaced.

For this example we used a Voronoi neighborhood constrained by a distance d, where d was
larger than the separation between the objects. However, if we had used a smaller distance,

15

207



then the algorithm would not have retrieved the purple group, since there would have been a
disconnection between the upper and the lower part of the purple group of Fig. 13(e), and therefore
only the lower part of the group would have been retrieved. This is an expected behavior.

In both experiments we used the same parameters for the extraction of the locally aligned
groups, which are β = 0.8 and d = 50 pixels. The degrees of global alignment in both cases were
very similar, for the purple groups the degree was µALIG = 1.0 in the two cases, and for the orange
groups it was µALIG = 1.0 in Fig. 13(c), and µALIG = 0.94 in Fig. 13(e). The degrees of global
alignment remained almost the same, since the missing objects and the modification of the object
are local changes which do not affect the global orientation of the groups. Nevertheless if one of
the objects is severely modified as in Fig. 13(f) then it is not possible to retrieve the same aligned
groups as before, which is again an expected behavior.

(a) (b) (c)

(d) (e) (f)

Figure 13: (a) Original image. (b) Segmented houses (red). (c) Some of the extracted globally aligned groups
from objects of (b). (d) Segmented houses with errors of missing objects and some merged regions. (e) Some of
the extracted globally aligned groups from objects of (d). (f) Segmented houses with errors that do not allow the
recovery of the globally aligned groups.

3.5. Complexity analysis
In this section we deal with the cost of the basic operations of the algorithm for extracting

locally aligned groups and globally aligned groups.
First, we consider the complexity of extracting locally aligned groups. Consider we have N objects
each with at most no points. The complexity of the algorithm is O(N2) since most of steps of the
algorithm deal with operations over the graph or its dual. It should be noticed that the step which
corresponds to the construction of the orientation histograms has a complexity of O(N2n2

o), since
at maximum there are N(N − 1) edges in the graph and for each edge an orientation histogram is
constructed with a complexity of O(n2

o).
The complexity of finding a globally aligned group from a locally aligned group with NA elements
each having at most no points lies in the following steps. The first step consists in evaluating
the degree of global alignment and division of the group in the case where it is not aligned, and
this step has a complexity of O(N2

An2
o). The second step consists in performing the morphological

directional dilations of the group in the directions of alignment θ and θ + π, and has a complexity
of O(NI) [39], where NI is the number of points in the image (see [39] for the implementation of
the directional morphological dilation using a propagation method). And finally, the complexity
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of the step of evaluating the degree of inclusion of each object not belonging to the group into
the directional dilations of the group is O((N − NA)n2

o), where N is the total number of objects.
Hence, summing the three steps we obtain that the total complexity is O(N2

An2
o + NI).

3.6. Discussion
In this part we have introduced the definitions of globally aligned groups and locally aligned

groups of objects, and gave a method to extract alignments from an image of labeled objects.
Both definitions are appropriate to determine alignments of objects of different sizes. Therefore,
the extraction method can be used to find alignments of objects of the same type or class, for
instance buildings in a urban scene, since all the objects do not necessarily have the same size.
However, not all the obtained groups are meaningful for the description of the scene, since the
subsets which are found only satisfy the conditions of alignment. For example Fig.14 shows two
globally aligned subsets of airplanes extracted using the proposed algorithm, the group of Fig.14(c)
is globally aligned but does not give any information about the arrangement of the airplanes, while
the group of Fig.14(d) gives us more information about the arrangement of the airplanes. Hence
it is necessary to use additional information to put the aligned groups into context, for example
find whether the alignments are parallel between them or parallel to a linear structure. In the
case of Fig.14 it would be interesting to find the alignement parallel to the buildings. This point
will be further discussed in the next section.

(a) (b)

(c) (d)

Figure 14: (a) Airport image. (b) Segmented airplanes (green). (c) Extracted globally aligned group in red with
degree 0.97. (d) Extracted globally aligned group in red with degree 0.99.

The proposed method for alignment extraction is very flexible. One should notice that it is
possible to incorporate more information according to the type of alignment. For instance, if we
are searching for an alignment where the objects of the alignment have the same orientation as
the alignment, this could be incorporated in the weight s̃ij attributed to the edges of the dual
graph. The new weight s̃ij of the edge between the vertices Ṽi and Ṽj , which represents a triplet
{X, Y, Z}, is given by a conjunction combining the condition that O(X, Y ) and O(Y, Z) should be
similar, and the condition that every member of the triplet should have a similar orientation to the
orientation histograms between itself and the other members of the triplet which are connected to
it. For instance, the condition for Y is expressed as:

sim(O(X, Y ), δθY
) ∧ sim(O(Z, Y ), δθY

),
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where δθY
is the Dirac function at the angle θY which represents the orientation of Y . For X and

Z the condition is verified by observing the degree of sim(O(X, Y ), δθX
) and sim(O(Z, Y ), δθZ

),
respectively. Since X and Z are connected to Y in the triplet, and the only histograms that
involve them are O(X, Y ) and O(Z, Y ), respectively. Finally, when combining all the conditions
the weight s̃ij is given by:

s̃ij =sim(O(X, Y ), O(Y, Z))∧
[min [sim(O(X, Y ), δθY

) ∧ sim(O(Z, Y ), δθY
), sim(O(X, Y ), δθX

), sim(O(Z, Y ), δθZ
)]]

(26)

In this equation we use the min to ensure that the second condition is satisfied by all the members
of the triplet.

4. Parallelism

For linear objects to be parallel, we expect a constant distance between them, or that they have
the same normal vectors and the same orientation. Although classical parallelism in Euclidean
geometry is a symmetric and transitive relation, these properties are subject to discussion when
dealing with linear objects of finite length. When objects have different extensions as in Fig. 15(a),
where B can be a house, and A a road, the symmetry becomes questionable. The statement “B is
parallel to A” can be considered as true, since from every point on the boundary of B that faces A
it is possible to see (in the normal direction to A’s principal axis) a point of A, and the orientations
of A and B are similar. On the other hand, the way we perceive “B parallel to A” will change
depending on our position: from point d it is possible to see a point of B in the normal direction
of B, while this is not possible from point c. In both cases (symmetrical and non symmetrical
ones) the transitivity is lost. For example, in Fig. 15(b) and 15(c) the statements “A is parallel
to B” and “B is parallel to C” hold, but “A is not parallel to C” since it is not possible to see
C from A in the normal direction to C. This example also illustrates the interest of considering
the degree of satisfaction of the relation instead of a crisp answer (yes/no). Then the relation “B
parallel to A” will have a higher degree than “A parallel to B” in Fig. 15(a).
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B C
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Figure 15: Examples where parallelism should preferably be considered as a matter of degree, and should not be
necessarily symmetrical and transitive.

The parallel relation can also be considered between a group of objects A = {Ai} and an object
B, typically when the objects in the group are globally aligned and B is elongated. For example a
group of boats and a deck in a port. When evaluating the relation “A is parallel to B”, actually
we are evaluating whether the whole set A and the boundary of B that faces A have a similar
orientation, and whether there is a large proportion of ∪iAi that sees B in the normal direction
to the group. Similar considerations can be derived when considering the relation “B is parallel
to A” or the relation between two groups of objects. All these considerations form the basis for
the formal models provided in this section.
For “A to be parallel to B” it is only necessary that A is a linear object, while B can be a non
linear object, and in this case A would be parallel to the boundary of B which is facing A. The
same idea is also applicable for the parallelism between a globally aligned group of objects parallel
to an object (see Fig. 16).
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Figure 16: A group of globally aligned objects parallel to a non-linear object.

4.1. Parallelism with (fuzzy) linear objects
In this section we propose a definition of parallelism between a fuzzy linear object3 and a fuzzy

object, including the particular case of crisp linear segments, and taking into account the above
mentioned considerations. Suppose A is a linear object and B an object that it is not necessarily
linear, let θA be the orientation of A and ~uθA+ π

2
be the normal unit vector to the principal axis

of A. Then, according to the considerations of the previous section, the degree of satisfaction of
the relation “A is parallel to B” depends on two conditions:

(i) There should be a large proportion of A that sees B in the direction ~uθA+ π
2
.

(ii) The orientation of A and the orientation of the boundary of B that is facing A and that is
seen by A in the direction ~uθA+ π

2
should be similar.

Both conditions deal with the notion of visibility. Let p be a point, X be a fuzzy object with
membership function µX and ~uθ a vector with angle θ with respect to the x-axis. Then the subset
of X that is seen by p in the direction ~uθ , that we denote by Xvis(p,θ), is equal to the intersection
of X with the visual field of p, when p observes in the direction ~uθ. The visual field is represented
as a morphological directional dilation in the direction θ of p. The set Xvis(p,θ) is a fuzzy set with
membership function µXvis(p,θ), where µXvis(p,θ)(x) represents the degree to which x is in X and
is seen by p in the direction ~uθ:

µXvis(p,θ)(x) = µX(x) ∧ Dνθ
(p)(x), (27)

where Dνθ
(p)(x) is the morphological directional dilation defined in Eq. (25).

Let Y be a fuzzy object with membership function µY not intersecting X. We denote by Xvis(Y,θ)

the subset of X that is seen by the points on the boundary of Y , i.e the subset of X that is seen
by Y , and it is defined by:

µXvis(Y,θ)(x) = µX(x) ∧ Dνθ
(µY )(x). (28)

Fig.17 shows two objects A and B, and Bvis(A,θA+ π
2 ), where θA is the orientation of A. When A

and B are linear segments, Avis(B,θA+ π
2 ) can be interpreted as the projection of B onto A.

For the first condition of parallelism, we are interested in the proportion of A that sees B in
the direction ~uθA+ π

2
. This subset is equivalent to Avis(B,θA−π

2 ), since the degree to which a point
x ∈ A sees B in the direction ~uθA+ π

2
is equivalent to the degree to which the point is seen by B in

the direction ~uθA−π
2
. Therefore, the proportion of A that sees B in the normal direction ~uθA+ π

2

is equal to the fuzzy hypervolume of Avis(B,θA−π
2 ) over the fuzzy hypervolume of A, where the

fuzzy hypervolume Vn of a fuzzy set µ is given by: Vn(µ) =
∑

x∈I µ(x) [1]. Hence, the proportion
is equal to:

Vn(µAvis(B,θA−π
2 ))

Vn(µA)

3We consider that an object is linear if the ratio of its principal axis given by
cyy+cxx−

√
(cxx+cyy)2−4(cxxcyy−c2xy)

cyy+cxx+
√

(cxx+cyy)2−4(cxxcyy−c2xy)
where C =

(
cxx cxy
cyx cyy

)
corresponds to the second moments matrix,

is high [40].
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A

(a) Objects (b) DνθA+ π
2
(A)

(c) µBvis(A,θA+ π
2

)

Figure 17: Illustration of the notion of visibility for the objects A and B of (a). (b) Visual field of A in the
direction of θA + π

2
(the white pixels have a high membership value of being observed by A in the direction θA. (c)

membership function of Bvis(A,θA+ π
2

), the white pixels are the points which have a high membership value.

For the second condition we are interested only in the subset of the boundary of B that faces A
and that is seen by the boundary of A in the direction θA. The boundary of B which faces an
object A corresponds to the points on the boundary of B that delimit the region between A and
B, and are defined as the extremities of the admissible segments [41]. These are the points b ∈ B
for which there exists a point a ∈ A such that the segment ]a, b[ is included in AC ∩ BC . In the
case were A and B are fuzzy objects, we will be interested in the points which are the extremities
of a segment with a high degree of admissibility [41]. Therefore, the subset of the boundary of B
that faces A and that is seen by the boundary of A in the direction θA + π

2 is a fuzzy subset were
the membership of a point x ∈ I is equal to the conjunction between its membership to B , the
degree of being the extremity of an admissible segment and the degree of being seen by A. We
denote this subset by δBvis(A,θA+ π

2 ) and its membership function by µδBvis(A,θA+ π
2 ):

µδBvis(A,θA+ π
2 )(x) = µadm(x) ∧ µBvis(A,θA+ π

2 )(x) (29)

where µadm represents the degree of being the extremity of an admissible segment.

Definition 4.1. The relation “A is parallel to B” is given by the following measure:

µ‖(A, B) =
Vn(µAvis(B,θA−π

2 ))

Vn(µA)

∧
ν0(θδBvis(A,θA+ π

2 ) − θA), (30)

where ν0(θ) is the same as in Eq. (5) and it evaluates the degree to which θδBvis(A,θA+ π
2 ), the

normal angle to δBvis(A,θA+ π
2 ), and θA are “approximately” equal.

In some contexts a symmetrical relation is needed (for example in perceptual organization),
and is then expressed as “A and B are parallel”. In such cases, we verify at that least one of the
sets is visible from the other in the normal direction and that the orientations of both sets are
similar, leading to the following definition.

Definition 4.2. The degree of satisfaction of the symmetrical relation, “A and B are parallel” is
expressed by:

µ‖S(A, B) =

[
Vn(µAvis(B,θA−π

2 ))

Vn(µA)

∨ Vn(µBvis(A,θB−π
2 ))

Vn(µB)

]∧
ν0(θδBvis(A,θA+ π

2 ) − θA)

∧
ν0(θδAvis(B,θB+ π

2 ) − θB)

(31)

Proposition 4.1. Both relations (Definitions 4.1 and 4.2) are invariant with respect to geometric
transformations (translation, rotation, scaling).

None of the relations is transitive, as discussed previously. But we have the following partial
result in the crisp case:
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Proposition 4.2. Let A, B, C be linear crisp segments, if µ‖(A, B) = 1 , µ‖(B, C) = 1 and
θA = θB = θC , then µ‖(A, C) = 1.

This result shows that in the crisp case we have transitivity. To have the transitivity property,
it is necessary that θA = θB = θC , since ν0(θA − θB) = 1 and ν0(θB − θC) = 1 do not imply
ν0(θA − θC) = 1 due to the tolerance value t1 of the function ν0 (see Eq. 5). To have the
transitivity without imposing the condition θA = θB = θC , it is necessary that ν0 is a linear
function (i.e. t1 = 0). But this is restrictive.

It is clear that both relations are reflexive. However, depending on the context we may not
want to consider intersecting objects as parallel. In this case, it is necessary to combine in a
conjunctive way the previous degree (Def. 4.1 or 4.2) with a degree of non-intersection between
the two sets.

4.2. Parallelism with a globally aligned group of objects
When considering parallelism with a globally aligned group of objects, the group has a similar

role as the linear object in the definitions introduced in the previous section. When defining the
relation with a group there is a modification, with respect to the case of a linear object, in the
way the visibility constraint is computed, this modification will be discussed in the following.

4.2.1. A group of globally aligned objects parallel to an object
Let S = {A0, . . . , AN} be a group of globally aligned objects, as defined in Sec. 3.3.1, and let

B be another object. For S to be parallel to B it is necessary that there is a large portion of S that
sees B, and this is computed in the same way as for the case of parallelism between a linear object
and an object. For the second condition we need to create the fuzzy set βS which is composed of
the union of the regions between two consecutive elements of S. βS can be constructed using the
definition that involves the convex hull presented in [41]. In Fig. 18(b) an example of the region
βS of a group S is shown in light purple. From Fig. 18(a) we can see that the boundary of B that
faces S and that is visible by S depends on the separation between the members of the group.
However, it is desirable that the degree of parallelism of a group to an object is independent
of the separation of its members, since if we add more elements to a group without changing
its orientation or its extension the degree of alignment to the object should remain the same.
Therefore, in order to have a degree of parallelism independent of the separation of the members
of the group we should use βS in the second condition of parallelism. Then, the second condition
becomes that the boundary of B that faces S and that is visible by βS or by S should have the
same orientation as the orientation of the alignment of S.

Finally, we define the relation as:

Definition 4.3. The degree of satisfaction of the relation “S is parallel to B” is given by:

µ‖(S, B) =
Vn(∨iµAivis(B,θs−π

2 ))

Vn(∨µAi
)

∧
ν0(θδBvis(βs∪S,θs+ π

2 ) − θS), (32)

where θs is the orientation of the alignment of the group S.

In this definition, the first part of the equation represents that there should be a large portion
of the union of all the Ai ∈ S that see B, and the second part evaluates the degree of similarity
between the orientation of the group and the orientation of the boundary of the object seen by
the group in the direction θs + π

2 .

4.2.2. A linear object parallel to a globally aligned group of objects
Using the same notations as above, suppose B is a fuzzy linear object. Then for “B is parallel

to S ” to be true, it is necessary that B has a similar orientation to the orientation of the alignment
of S, and that there is a large proportion of B that sees the group of objects or βS . As in Def.
4.3 it is necessary to use S ∪ βS in order to assure that the parallel relation is independent of the
separation of the element of S.
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(a) (b)

Figure 18: (a) Visibility field of the group of objects S, and the boundary of the object facing S (in black). (b)
Visibility filed of the region between two consecutive members of the group βS (light purple) and the group S, and
the boundary of B facing S ∪ βS (in black).

Definition 4.4. The degree of satisfaction of the relation “B is parallel to S” is given by:

µ‖(B, S) =
Vn(∨iµBvis(S∪βS ,θB−π

2 ))

Vn(∨µB)

∧
ν0(θS − θB), (33)

where θB is the orientation of B.

4.2.3. Parallelism between two globally aligned groups of objects
Using the same notation as in Def. 4.4, we can define the parallelism between two globally

aligned of fuzzy sets S = {A0, . . . , AN} and T = {B0, . . . , BM} :

Definition 4.5. The degree of satisfaction of the relation “S is parallel to T ” is given by:

µ‖(S, T ) =
Vn(∨iµAivis(T ∪βT ,θs−π

2 ))

Vn(∨µAi
)

∧
ν0(θT − θS), (34)

where βT is the region formed between two consecutive elements of T and θT is the orientation of
alignment of the group T .

4.3. Discussion
In this section we discussed the considerations that should be taken into account when modeling

the parallel relation. We highlighted that the parallel relation should be modeled as a fuzzy
relation represented as the conjunction of two conditions, one dealing with visibility and the other
with similarity of orientation. Using the directional morphological dilation to model the visibility
condition allows us to identify the region on the image where it is possible to find objects to which
the object of interest or groups of objects are parallel to.

5. Illustrative examples

In this section we present two examples to illustrate the usefulness of the defined relations.
The first example deals with urban patterns. By using the relations of globally alignment and
parallelism between globally aligned groups we are able to determine the residential areas composed
of organized houses. The method for determining the globally aligned groups of objects was
applied on the segmented buildings of Fig. 19. The buildings were obtained by using the method
described in [42]. For the extraction we used a β = 0.85 and a Voronoi neighborhood constrained
by a distance of 30 pixels equivalent to approximately 21 m, since we are interested in residential
area, in which houses are usually close to each other. Some of the globally aligned groups of
houses are shown in Fig. 19(c). It is not possible to show all the aligned groups found by the
algorithm since there are objects which belong to more than one group. We can see that the
method obtains groups of globally aligned objects of different sizes which do not have an aligned
barycenter. The obtained groups contain few elements due to the small neighborhood used to
extract them. From the obtained globally aligned groups of houses we extracted the groups which
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are parallel to another group or which have a group parallel to it and is close to another group to
a degree greater than or equal to 0.8. The spatial relation “close to” was modeled in the same way
as in [43]. The groups of houses satisfying the previous condition of parallelism are shown in Fig.
19(d). The regions containing organized groups of houses are well detected.

(a) (b)

(c) (d)

Figure 19: (a) Original image. (b) Segmented buildings. (c) Some of the globally aligned subsets of houses found
by the algorithm with a degree of alignment greater than 0.85. (d). Clusters of houses belonging to globally aligned
groups which are parallel and near to other groups with a degree greater than or equal to 0.8.

In this example we showed that by using the spatial relations of alignment and parallelism it
is possible to recognize spatial urban patterns in the image.

The second example deals with the elimination of false detections of roads near urban areas
obtained from a road extractor [44]. Figure 20(a) shows the result of a road detection algorithm.
Some of the obtained roads are false detections. We know that in the residential areas, the houses
are aligned forming groups which are parallel to the roads. Therefore, in this example, we are
mainly interested in determining the roads which have a group of buildings parallel to them.
However, since some of the roads extracted in Fig. 20(a) consist of road’s fragments, then we
will be also interested in determining the roads which are parallel to a group of aligned buildings.
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Considering that the groups of aligned buildings which are parallel to roads do not have to satisfy
the constraint of buildings being close to each other, we extracted the groups of aligned buildings
using β = 0.85 and a Voronoi neighborhood constrained by a distance of 70 pixels equivalent to
approximately 49 m. Some of the obtained groups of aligned buildings are shown in Fig. 20(b).
If we compare the results of Fig. 20(b) and of Fig. 19(c) we can see that we obtain longer groups,
and some of the groups of Fig. 19(c) are included in Fig. 20(b). By allowing a larger distance
between the members of an aligned group, we are more permissive and therefore we can obtain
groups such as the green group on the bottom right part of the image, which is an aligned group
made of distant objects, and does not represent a meaningful alignment for the description of the
scene.

As in the previous example we made use of the “close to” relation. The resulting roads which
are “close to” an aligned group of objects and which are parallel to the group or which have a group
parallel to them are shown in Fig. 20(c) (we call this condition the constraint of parallelism). As
we are interested only in the roads on residential areas, since the hypothesis of the constraint of
parallelism is only valid these areas, Fig. 21 shows a subregion of the image were the roads that
satisfy the constraint of parallelism. We note that most of the roads which have a low degree of
satisfaction of this constraint are the roads which can be classified as false detections. However
on the bottom of the image we see three false detections that continue to be detected with a high
degree. This is due to the fact that there exist groups as the green aligned group in Fig. 19(c)
for which these roads are parallel. Although there are still some false detections, we can observe
that the number of false detections has been significantly reduced. Determining the roads which
satisfy the constraint of parallelism can be seen as an intermediary step for a road and building
extraction method. We can further think of combining the parallel and the alignment relations,
with the relation “between” [41] to determine the region between two parallel groups of aligned
buildings where it is possible to find a road.

Both presented examples demonstrated the need of modeling the alignment relation considering
each object as a whole, rather than only its center of mass. For example the orange group in Fig.
20(b) is an aligned group with non aligned barycenters.

6. Conclusion

After having highlighted the importance of alignment and parallelism for high resolution remote
sensing image interpretation, we proposed fuzzy models for determining what is the degree of
satisfaction of these relations between a set of objects in an image. The proposed models take into
account the semantic meaning of the relations. Two original definitions were presented for the
alignment relation: local and global alignment. An algorithm for extracting local aligned groups
of objects was proposed, based on fuzzy relative position measures, which takes into account the
imprecision inherent to images and to the segmentation process. Based on the extraction of locally
aligned groups of objects, we proposed a method for extracting globally aligned groups of objects
using a graph based approach.
As the parallel relation and the alignment relation are frequently found together, we presented a
model for determing when a linear object is parallel to an object, when a group of globally aligned
objects is parallel to an object, and when a linear object is parallel to a group of objects. We
showed how all the proposed models and algorithms can be extended to the case of fuzzy objects
or when using using fuzzy neighborhoods for the alignment relations.
The examples, on real objects extracted from satellite images, have shown the usefulness and
power of the proposed models for scene undertanding. We also highlighted how these relations
can be used as intermediary steps for extracting objects in images.
Future work aims at combining the newly proposed spatial relations with state of the art spatial
relations for the interpretation of complex scene on satellite images, which can be integrated in
content-based image retrieval applications.
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(a) (b)

(c)

Figure 20: (a) Original roads. (b) Some of the globally aligned subsets of houses found by the algorithm with a
degree of alignment greater than 0.85. (c) Obtained roads, after eliminating the roads which were not parallel to a
group or did not have a group parallel to them. The green roads represent the roads which satisfy the constraint
of parallelism with a degree between 0.3 and 0.5, the blue roads between a degree 0.5 and 0.8 and the red roads
between a degree of 0.8 and 1.0.
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High resolution optical and SAR image fusion for
building database updating
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and Philippe Marthon

Abstract—This paper addresses the issue of cartographic
database creation or updating using high resolution SAR and
optical images. In cartographic applications, objects of interest
are mainly buildings and roads. This paper proposes a processing
chain to create or update building databases. The approach
is composed of two steps. First, if a database is available, the
presence of each database object is checked in the images. Then,
we verify if objects coming from an image segmentation should be
included in the database. In order to do those two steps, relevant
features are extracted from images in the neighborhood of the
considered object. The object removal/inclusion in the database
is based on a score obtained by the fusion of features in the
framework of Dempster-Shafer evidence theory.

Index Terms—Image analysis, change detection, data fusion,
image databases, feature extraction.

I. INTRODUCTION

W ITH the recent (or in the very next future) availability
of high resolution (HR) optical and radar satellite

sensors, such as in the ORFEO program1, the need of multi-
sensor image processing chains that are able to assist a human
expert in scene interpretation is increasing.

In this work, we focus on the problem of cartography
creation/update, and more precisely on built-up areas. We
propose a generic image processing and interpretation chain
for cartography creation/update. This chain is generic because
it can process multi-sensor data (optical and SAR images are
considered in this work), at various resolutions (between 70cm
and 2.5m for results presented in this paper) and can take into
account ancillary data (typically a digital map). HR optical
images are often used in cartographic applications, thanks to
their easy interpretation. However optical sensors are time and
weather dependent. On the contrary, SAR sensors have an
equal effectiveness at any time of the day and night. They
can provide information quickly in emergency situations or
in cloudy area for instance. However the interpretation of
SAR images is more complex. Consequently a multi-sensor
application can exploit the complementarity of sensors to
provide a maximum of information on a scene.

Several scenarios are possible according to available images
and data. The basic (and optimistic) case is the one where
available input data are: a multispectral high resolution image
(for instance Quickbird or Pleiades), a high resolution SAR
image (for instance Cosmo-SkyMed or TerraSAR-X) and a
vector database. The aim is then to update the vector database.
However, other (less optimistic) scenarios of input data are

1http://smsc.cnes.fr/PLEIADES/

foreseen to be processed by the chain: for instance the use
of a single optical or SAR image, or two images of same
kind (Cosmo-Skymed and TerraSAR-X for instance), or an
optical image at a lower resolution (SPOT-5 for instance) or
panchromatic, with or without database as prior information.

Often, existing methods are specific to one sensor in single
mode. Indeed, in the field of building extraction with a single
optical image, many methods have been proposed. In [1], [2]
hypotheses of buildings are created by grouping primitives
extracted from airborne images. Buildings are extracted in [3]
from a panchromatic QuickBird image using clustering and
edge detection. Methods based on segmentation of high res-
olution images followed by a segment classification to detect
buildings are presented in [4] with multispectral images, in
[5] with panchromatic images, and in [6], [7] with aerial RGB
images. In [8] is presented a method based on active contours
to check a digital map of buildings using a panchromatic
Quickbird image. Methods based on a shape prior, using
morphological operators are presented in [9]–[11]. A building
detection method based on the integration of shape priors in a
level-set image segmentation is proposed in [12]. Approaches
described in [13], [14] use graph theory to extract buildings
from optical images.

With SAR sensors, the analysis of a single image to extract
buildings is a more challenging task. Some promising methods
are based on marked point processes [15], [16]. However
robust results are very hard to achieve. Building detection and
height estimation methods are proposed in [17]–[19] using
interferometric SAR data. A method for extracting building
outlines using a SAR intensity image is explained in [20], and
using features extracted from SAR and optical images in [21].
In dense urban environments, single SAR images are more
efficiently used to extract the road network. For instance, in
[22], a road network extraction is proposed based on a Hough
transform and a road tracking algorithm.

Contrary to these approaches, this paper proposes a generic
chain. It is able to integrate multi-sensor images and exoge-
nous data. The goal is to exploit all the available information
on a scene. The proposed chain can also evolve with the easy
integration of new features.

The paper is organized as follows. Section II gives an
overview of this work by describing our generic processing
chain. Section III describes features used to characterize the
objects of interest (buildings). A fusion method allowing one
to combine all advantages of these features is studied in section
IV. Finally, results are presented in section V.
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II. PROCESSING CHAIN

Our processing chain is presented in Fig. 1. Inputs of the
chain are high resolution images: an optical and/or a SAR
image. Resolution of images should be in the range of 0.6 up
to 2.5 meters for the optical images, and around 1 meter for the
SAR images. A cartographic database (DB) can be available.
The registration of images and DB is not part of this work.
Thus images and DB are assumed to be registered. As we
work at object level with buffer regions, a coarse registration
(that can be performed automatically with an accuracy of
several pixels) is sufficient to define appropriate buffer regions.
Consequently a fine registration is not needed. The goal of
this chain is to update (if available) or create a vector DB
representing buildings. If a DB is available, our approach
consists of two steps: first we consider each DB object and we
check if the object is present in the SAR and optical images. To
do so, some relevant features based on primitives are computed
in the neighborhood of each object and fused to decide if the
object should be kept in the DB. The second step consists of
detecting buildings that are missing in the DB and including
them in the DB. The proposed method is similar to the first
step. However, instead of considering each DB object, we
consider each region coming from a multiscale segmentation
[23] of the optical image. In this work an optical image
is required to extract new buildings. If no optical image is
available, the detection of new buildings should be performed
with approaches specific to building detection in SAR images
such as [15], [16]. However, these methods are not used in
this work.

The goal of the two steps presented in Fig. 1 is to provide
a score for each object (coming from the DB or from the
segmentation) representing its likelihood of being a building.
Consequently, simple cases can be processed automatically
whereas more complex cases may require the intervention of
a human operator.

Moreover, a constraint of our algorithm is the absence of
learning set to classify building candidates. So the classifica-
tion has to be performed with prior knowledge on buildings.
However, if a DB is available, the DB verification will be
performed with the prior knowledge. Accepted buildings after
this step will be used to optimize parameters of the building
detection algorithm.

III. FEATURE EXTRACTION

A. Hypothesis generation

In the DB verification step, we consider objects coming
from the DB (for buildings, these objects are polygons). As
detailed in Fig. 1, objects are subject to feature computa-
tion, feature fusion and decision. For the detection of new
objects (left part of the chain shown in Fig. 1), the three
same steps are applied to objects (polygons). To do so, we
must generate these objects, i.e., extract object hypotheses
from images. In this work we only extract hypotheses from
the optical images. They can be also extracted from SAR
images, however it is more challenging. To generate building
hypotheses, we perform a multi-scale segmentation of the
optical image by using the Mean-Shift algorithm [23]. This

New objects detectionNew objects detection

Optical and/or SAR
Images

Database  verificationDatabase  verification

 Learning to 
 optimize fusion 

 parameters  

 Primitive extraction 

Updated database

 Hypothesis
  generation 

➔ Edges
➔ Vegetation
➔ Shadows
➔ Line segments{

{Coarse registration

DB
YesNo

 Feature 
 computation 

 Decision

 Feature 
fusion

 Decision

 Feature 
 computation 

 Feature 
fusion

Fig. 1. Processing chain for building DB creation or updating.

algorithm requires three parameters: the spatial radius, spectral
radius and minimum region size. We use various spectral
radius to obtain segmentations at different scales. The resulting
regions are then transformed into polygons that will be used
for the detection of new objects. Note that if a DB is available,
it was checked in the previous step. Consequently, building
hypotheses are regions coming from the segmentation of the
optical image that do not intersect polygons kept in the DB.

B. Feature computation

The goal of feature computation is to find clues in images
about the presence of buildings. As the proposed approach
must be generic, we have to find features common to most
kinds of buildings. As represented in Fig. 2, in optical images,
most buildings contrast with their surrounding, cast a shadow
(as a building is higher than its surrounding), contain no
vegetation and have linear walls (this feature characterizes
man-made structures). In SAR images, some buildings present
a contrast between the layover and the shadow area [24]. How-
ever these characteristics are not observed for all buildings.
Indeed, if the sun is at its zenith, elevated objects do not cast
a shadow. Moreover small houses do not have long enough
walls to be detected as meaningful segments. A fusion process
detailed in the next part is used to combine all available
information extracted from images. The result of this fusion is
used to make a decision on the relevance to include an object
in the DB.
Algorithms used to extract primitives associated to this prior
information are provided in Table I. Once primitives have
been extracted from input images, appropriate features are
computed in the vicinity of each building hypothesis providing
a score associated to the presence of buildings. These features

223



3

are:
1) Shadow: This feature requires to know the direction of

the sun as a prior information on the optical image.
This information is used to determine which building
hypothesis walls are oriented toward the sun. A shadow
mask is also required. In this work we obtain the shadow
mask by using an empirical thresholding of the optical
image. However automatic methods such as the ones
developed in [25], [26] could also be used for that
purpose. We consider building hypothesis wall pixels,
that are pixels of the optical image lying on the edges
of input polygons. Around each building hypothesis
wall not oriented toward the sun, we define a buffer
region (width of several pixels depending on the image
resolution) and compute the percentage of wall pixels
that contain a shadow pixel in their neighborhood.

2) Line segments: Segments are extracted from the optical
image using the Line Segment Detector [27]. For each
building hypothesis wall (each line of input polygon), we
consider extracted segments that are in their neighbor-
hood and parallel to the wall (for our tests we allowed a
tolerance of 10 degrees). We compute the percentage of
building hypothesis wall pixels containing an extracted
segment parallel to the wall in their neighborhood.

3) Edges: We compute the contrast between the building
hypothesis and its neighborhood. The resulting score is
the mean distance between building hypothesis borders
and optical image nearest edges (extracted using Mean
Shift [23]).

4) No vegetation: This feature requires a multispectral im-
age. We determine the percentage of not vegetated pixels
located inside the building hypothesis (a vegetation mask
is obtained thanks to a thresholding of the NDVI [28]
of the multispectral image).

5) SAR contrast: We define buffer regions around walls
oriented toward the sensor (layover region) and be-
hind opposite walls (shadow region). For each building
hypothesis, we compute the ratio of means: score =

log
(

m(layover)
m(shadow)

)
.

These five features are examples that have been implemented
in order to provide data to the fusion step, which is the crucial
point of this work. Moreover, once the strategy of feature
adding has been set up, new features can be easily integrated
to the proposed generic processing chain. Note that according
to the scenario, some features may not be computable. For
instance if only one optical panchromatic image is available,
only three features will be computed (shadow, line segments
and edges). The score indicating the likelihood of being a
building is computed from a fusion procedure described in
the next section.

IV. FEATURE FUSION

A. Fusion framework

As explained in the previous section, several features are
extracted from images. Each feature brings evidence on the
presence of a building. To benefit from all information brought
by features, we need to combine scores coming from each

Shadow

Linear boundaries

No vegetation
Contrast with 
surroundings

{
Right angle

Layover
Bright line
Roof
Shadow

Satellite 
flight 
path

Optical image SAR image

Fig. 2. Characterization of buildings in optical and SAR images

feature. The goal of the fusion is to exploit redundancy and
to reduce uncertainty. Evidential reasoning can be based on
three frameworks: Bayesian probability theory [30], Dempster-
Shafer theory of evidence [31] and possibility theory [32].
Bayesian probability theory is a classical method for data
fusion that is based on a well-developed decision-making
theory. However, it requires a considerable amount of prior
knowledge and cannot easily model imprecise, incomplete and
not totally reliable information. Dempster-Shafer theory of
evidence is a generalization of probability theory that allows
us to capture the imprecise nature of evidence. The resulting
decision is not very well defined since degrees of likelihood
are measured by probability intervals instead of probabilities
for the Bayesian framework. Possibility theory, based on fuzzy
set theory [33], is also adapted to uncertain and imprecise
information. It might be used as well in our application.
However, with the possibility theory, several combination rules
are possible, and the choice between these rules is not straight-
forward. The Dempster-Shafer evidence theory has a clearer
and more rigorous foundation. Moreover it provides interesting
byproducts, such as conflict between sources, ignorance (as the
confidence is expressed through intervals), that can be used to
analyze complex cases that do not fit the established model.
A human operator might want to focus on those complex
cases while cases with a great confidence value might will
be processed automatically. In our application, features bring
pieces of evidence on the probability of being a building.
However most of them do not discriminate only buildings (for
instance, absence of vegetation can be an evidence of presence
of buildings, but also of roads). The Dempster-Shafer theory
of evidence appears as the best adapted framework to represent
and manage imprecision of features, and also to allow the easy
integration of new features in the chain.

B. Evidence theory

In Dempster-Shafer framework, evidence is assigned to
elements of the set of all possible propositions called frame
of discernment, often denoted by Θ. The power set P(Θ)
is the set of all possible subsets of Θ. Subsets of Θ are
called propositions. The quantity of evidence that a source
assigns to a proposition is represented by a mass function (also
called basic probability assignment). A mass function (MF) m
satisfies the following properties

m : P(Θ)→ [0, 1],
∑

Ai⊆Θ

m(Ai) = 1,m(∅) = 0. (1)

Subsets that are assigned a mass by a source are called focal
sets of the source.
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TABLE I
FEATURE EXTRACTION.

Sensors Optical SAR
Panchromatic Multispectral

Properties Higher than sur-
roundings Linear structure Contrasts with

surroundings No vegetation SAR contrast

Primitives Shadow mask Line Segment
[27]

Edges [23] and
distance to edge
measure [29]

Vegetation
mask(NDVI [28]
thresholding)

Ratio
layover/shadow

Examples

The uncertainty corresponds to the set Θ. Considering the
focal set model built according to feature imprecision, masses
assigned to sets included in (resp. containing) the building set
will constitute the belief (resp. the plausibility) of building
hypothesis. After defining focal sets for each feature, the
fusion of information is performed thanks to the Dempster-
Shafer orthogonal rule. The mass of a proposition P , resulting
from the combination of two sources 1 and 2 is expressed as
follows

m12(P ) = m1 ⊕m2(P ) =
1

1− κ
∑

A∩B=P

m1(A)m2(B) (2)

with κ =
∑

A∩B=∅m1(A)m2(B).
Information about each proposition is represented by an in-
terval, bounded by two values: the belief and the plausibility.
The belief function contains all evidences attached to subsets
of the proposition P

Bel(P ) =
∑

A⊆P
m(A). (3)

The plausibility function is the sum of all the masses that
intersect the set of interest P

Pl(P ) =
∑

A|A∩P 6=∅
m(A). (4)

There are various ways to take a decision in the Dempster-
Shafer framework. The main decision rules are the maximum
of belief, the maximum of plausibility and the center of the
interval whose boundaries are belief and plausibility. For our
tests we have chosen the trade-off consisting of taking the
mean of belief and plausibility.

C. Imprecision representation

To take into account the imprecision of our features, we
build a model representing relationships between focal sets.
To build the model, we consider each feature and the type of
object they can discriminate. The approach is the following. A
ground truth of an image is used to generate samples of various
classes in an image. In dense urban environment we consider
typically the following classes: building, vegetation, road,
shadow, water, and heterogeneous regions (regions composed
of parts of other classes). Feature values for the various classes

are used to build histograms. For instance histograms for the
features Shadow and No vegetation are represented in Fig.
3. The histogram depicted in Fig. 3.(a) shows that elements
of classes Roads, Shadows and Heterogeneous objects have
a very low value, while elements of classes Buildings and
Vegetation are more spread over the histogram. Consequently
most buildings and vegetation can be distinguished from the
other classes. Moreover the histogram depicted in Fig. 3.(b)
shows that the feature No vegetation allows one to discriminate
between vegetation and buildings. More generally, considering
histograms for the five features, the analysis of feature value
repartition for each class leads to following properties:
• Buildings contain no vegetation. However there are other

objects that are not vegetated (like roads)
• Objects contrast with their surrounding
• Most buildings and trees project a shadow
• Most objects with linear borders are man-made structures

(roads or buildings)
• Only some buildings present a contrast between the

layover and the shadow area.
Based on these remarks, we build the model of relationships
between focal sets displayed in Fig. 4. This figure shows
relationships of partial or total inclusion between focal sets.
Even if most buildings contain no vegetation, a no vege-
tated object is not always a building. Consequently, the set
Building (hatched in the Fig. 4) is included in the focal
set No vegetation. We mentioned previously that the feature
Shadow can distinguish elevated objects (high vegetation and
most buildings) from other objects. Consequently, in the prior
model of Fig. 4, the only non vegetated set included in the
Shadow border focal set is the Building set. Other elements
of the Shadow border set are vegetated objects. In SAR
images, according to their size and their orientation, some
buildings present a contrast between layover and shadow area.
Consequently the SAR contrast focal set is totally included in
the Building set. The Dempster-Shafer evidence theory assigns
pieces of evidence to each focal set. During the fusion step,
the mass of each set is computed according to the Dempster-
Shafer orthogonal rule. Finally, the decision is taken according
to the value of belief and plausibility of the building set
(hatched in Fig. 4). This model gathers prior information on
feature imprecision. Data fitting will be represented by MFs
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Fig. 3. Examples of histograms for features Shadow (a) and No vegetation
(b).

detailed in the next part.
Note that the Bayesian probability theory would be more
complicated to apply. Indeed, it would require to define
the conditional probabilities of each subset for the fusion
(for instance as the shadow feature cannot discriminate
between buildings and trees, P (Building|Cast shadow) and
P (Tree|Cast shadow) should be known, which requires a lot
of prior knowledge).

No vegetation

Edge

Linear boundary

Shadow border

Building
SAR Contrast

Fig. 4. Model of focal sets.

D. Representation of uncertainty

MFs have to be defined to represent uncertainty. MFs
determine the quantity of evidence brought by a source to each
set defined in the model represented in Fig. 4. Each feature
that we have implemented brings information to three sets: the
corresponding focal set, its complementary and uncertainty.
To determine the quantity of evidence brought to each of
these sets, we use trapezoidal mass functions which have
shown simplicity and efficiency in a similar application [34].
The trapezoidal functions used in our study are represented
in Fig. 5. For instance, an object with a high score for the
feature No vegetation will lead to a high mass for the set
No vegetation and a low mass for the uncertainty. Conversely,
if the object is composed of vegetation pixels in almost half
of its surface, the uncertainty will be high for this feature.
MFs depend on four parameters (as represented in Fig. 5)
gathered in θj = (aj , bj , cj , dj) where j varies from 1 to 5 and
corresponds to each feature. At the beginning of the chain, MF
parameters have to be set up. It can be achieved empirically, or
optimized thanks to a ground truth. After the DB verification
(if a DB is present), a learning set of verified buildings
is available. The next subsection addresses the problem of
optimizing the vector θ = (θ1, ..., θ5) thanks to a learning set.
In our tests, we have used true buildings coming from a ground
truth, and false buildings (corresponding to other objects like
shadows, roads, trees, and heterogeneous objects). Then MFs
have been optimized using the method detailed in Section
IV-E. Note that once MFs have been optimized with an image
dataset, they can be used to process other images acquired
in the same conditions (image type, resolution, environment,
illumination, ...).
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Fig. 5. Model for mass functions.

E. Parameter optimization

For each feature (shadow, line segment, edge, no vegetation
and SAR contrast), three MFs are needed (for the focal set,
its complementary and uncertainty), that lead to four param-
eters to optimize per feature (so 20 parameters in total). As
described in the processing chain shown in Fig. 1, parameter
optimization is conducted in the case of an available DB. After
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verifying the DB, input objects are divided into two classes:
buildings kept in the DB, and buildings removed from the
DB. We use those samples to optimize the 20 parameters
of the MF model, which is used to perform the detection of
new buildings. The function that is minimized to estimate θ
is defined as:

F (θ) = p

n0∑

i=1

(
1− Bel(Bi) + Pl(Bi)

2

)2

+ (1− p)
N∑

i=n0+1

(
Bel(Bi) + Pl(Bi)

2

)2

where B1, ..., BN represent the Building focal set of each
object. We consider that objects numbered from 1 to n0 are
kept in the DB, while those numbered from n0 + 1 to N are
removed from the DB. Minimizing F (θ) consists of maximiz-
ing the mean of belief and plausibility for accepted buildings
and minimizing this mean for rejected buildings, p weighting
the two terms appearing in F (p is set to 0.5 in this paper
reflecting the absence of knowledge for this parameter). The
optimization can be achieved using a numerical optimization
procedure. Results presented in this paper have been obtained
thanks to the Nelder-Mead method [35].

Mass functions optimized for the feature No vegetation
are provided in Fig. 6. The four parameters for this feature
are estimated using real buildings (coming from an up to
date DB) and false buildings (corresponding to other objects).
Parameters are initialized using prior information: we consider
that the uncertainty is maximum when half of object pixels
are vegetation pixels (b = 50). Moreover, we have chosen
a = 0, c = 100 and a reliability (parameter d) equal to
0.8 (as we have no information about these parameters). The
result of the optimization proves that most of buildings contain
no vegetation. Indeed, if an object contains at least 5.5% of
vegetated pixels (b = 94.5), no evidence will be brought to
the No vegetation focal set. The reliability of this feature has
a value of 0.75. Consequently a highly vegetated building will
present an uncertainty of 0.25, keeping a possibility to be
considered as a building if it has other characteristics of a
building (like a contrast in SAR images, line parallel to its
wall,...).

Note that if some wrong buildings are kept in the DB or
true buildings are rejected, the parameter estimation will be
impacted. According to the application, solutions are possible
to overcome this issue. For instance, a human operator can
be included in the chain after the DB verification step to
validate results. He will focus on uncertain and complex
cases. Consequently the learning step will be performed with
a correct learning set. If the chain is used in a fully automatic
way, errors after the DB verification will reduce the quality of
the object detection step.

V. SIMULATION RESULTS

Experiments have been performed to evaluate both the
DB verification and the detection of new buildings. Two
datasets are available. The first one has been acquired over
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Fig. 6. Optimized mass functions for the feature No vegetation.

Toulouse, France, in an urban environment. More precisely,
we used a Pleiades simulated image (coming from the airborne
sensor PELICAN downsampled to 70cm and to 2.5m) and
a TerraSAR-X satellite image at 1m resolution associated
to the same area. The test area contains 111 buildings, i.e.,
70982 pixels in the 70cm resolution optical image (whose
size is 787x888 pixels). The second dataset has been acquired
over Haiti. It consists of a 60cm QuickBird image and a
TerraSAR-X image at 1m resolution. This test area contains
100 buildings, i.e., 175824 pixels in the 60cm resolution
optical image (whose size is 1100x1332 pixels). Building
DBs contain vector data representing the 2-D coordinates of
building outlines.

Results are evaluated both at object and pixel levels. At
object level, a reference building is considered as detected if
more than 50% of its surface has been detected. A detected
object is considered as a false alarm if more than 50% of
its surface does not correspond to a building in the ground
truth. Note that this threshold of 50% is a balanced value
used in our tests. However, a more strict criterion might be
used, for instance by considering a building as detected if
at least 90% of its surface has been detected, and an object
as a false alarm if more than 10% of its surface does not
correspond to a building. Such a strict criterion would tolerate
less imprecision in the detected building delineation. In our
tests it would not impact the DB verification results because
we use a ground truth to provide true buildings. A correctly
accepted building is a true positive (TP). A correctly rejected
object is a true negative (TN). A wrongly rejected building is
a false negative (FN). A wrongly accepted object is a false
positive (FP). Considering the number of TP, TN, FN and
FP for each case we compute precision and recall [36]. The
precision can be seen as a measure of correctness (corresponds
to the probability that an accepted object is a true building),
whereas the recall is a measure of completeness (corresponds
to the probability that a reference building is accepted). The
more those coefficients are close to 1 the best is the result.
The F-measure corresponds to the harmonic mean of precision
and recall. The pixel level evaluation is performed using the
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false alarm rate (FAR) and the detection rate (DR). It is a
classical evaluation method in this type of work. However, this
evaluation is not suitable for the object level evaluation of new
building detection. Indeed, FAR depends on the number of true
negatives (false buildings correctly rejected). In the building
detection step, the number of false buildings is huge (they are
due to oversegmentation). Consequently FAR is always very
low, and thus not interesting to evaluate results. The advantage
of recall/precision evaluation is its independence to the number
of true negatives.

For the first dataset, acquired over Toulouse, results are
presented in seven cases which gather possible scenarios of
our processing chain
• Case 1: a multispectral 70cm resolution image, and a 1m

resolution TerraSAR-X image.
• Case 2: a multispectral 70cm resolution image.
• Case 3: a panchromatic 70cm resolution image, and a 1m

resolution TerraSAR-X image.
• Case 4: a panchromatic 70cm resolution image.
• Case 5: a multispectral 2.5m resolution image, and a 1m

resolution TerraSAR-X image.
• Case 6: a multispectral 2.5m resolution image.
• Case 7: a 1m resolution TerraSAR-X image.
For the second dataset, acquired over Haiti, scenarios are

as follows
• Case 1: a multispectral 60cm resolution QuickBird image,

and a 1m resolution TerraSAR-X image.
• Case 2: a multispectral 60cm resolution QuickBird image.
• Case 3: a panchromatic 60cm resolution QuickBird im-

age, and a 1m resolution TerraSAR-X image.
• Case 4: a panchromatic 60cm resolution QuickBird im-

age.
• Case 5: a 1m resolution TerraSAR-X image.
The proposed decision is taken thanks to a threshold T that

can vary in the interval [0, 1]. An object is accepted if

Pl(B) + Bel(B)

2
≥ T. (5)

This threshold is empirical and depends on the application
where a low false alarm rate or a high detection rate may be
preferred. It can be adjusted by a human operator accordingly,
or kept to a default value in a fully automatic use of the
processing chain.

A. DB verification

To evaluate the DB verification with the dataset acquired
over Toulouse, we have created a DB composed of true build-
ing outlines coming from a ground truth (111 buildings) and
of false buildings (polygons) created manually (148 objects).
The evaluation consists of checking if the processing chain is
able to keep true buildings and remove false buildings. Results
are presented in Table II for the seven cases. Our results prove
that the DB verification step can be performed efficiently in
the first six cases. However the problem is more challenging
when only a SAR image is available. The analysis of Cases
5 and 6 highlights the interest of a 1m resolution SAR image
when the optical image has a resolution of 2.5m. However,

when the optical image has a high resolution (70cm), Cases 1
and 2 show that the presence of a 1m resolution SAR image
does not improve results. Fig. 7 illustrates the DB verification
procedure for the first case. The threshold T mentioned in Eq.
5 was tuned empirically in order to have a balanced result,
with three false positives and three false negatives. This result
was obtained with a threshold value of 0.25.

Fig. 7. Result of DB verification with the Toulouse dataset for the case
1, with the following colors: TP (in green):108 buildings correctly accepted,
FN (in red): 3 buildings wrongly rejected, FP (in blue): 3 objects wrongly
accepted and TN (in white): 145 objects correctly rejected.

To obtain those results, MFs have been determined thanks
to a parameter optimization based on samples coming from a
ground truth. Some results associated to the DB verification
for Case 1 are presented in Table III. This table shows
interesting objects (referred to as Case (a), ..., (f)) extracted
from Fig. 7 and the corresponding masses brought by each
feature. The third and fifth rows of this table correspond to
the hypothesis of building outline projected respectively on
the optical and SAR images. The fourth row corresponds to
primitives extracted from the optical image with the following
colors: edges in white, line segments in red, vegetation mask
in green and shadow mask in blue. The considered cases have
the following characteristics:
• Case (a) corresponds to a true building correctly kept

in the database (like 107 other buildings). It is a large
and high building, that contrasts with its neighborhood,
projects a large shadow, with linear boundaries, contains
no vegetation and presents a layover and a shadow
area in the SAR image. Masses assigned to each focal
set highlight the presence of all characteristics for this
building. Consequently, the score corresponding to the
mean of belief and plausibility for the set Building is
high (0.87).

• Case (b) corresponds to a real building which has been
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TABLE II
DB VERIFICATION RESULTS USING TOULOUSE DATASET.

Scenario Object level evaluation Pixel level evaluation
TP TN FN FP Precision Recall F-measure FAR DR

Case 1 108 145 3 3 0.973 0.973 0.973 0.00455 0.938
Case 2 108 145 3 3 0.973 0.973 0.973 0.00420 0.920
Case 3 103 140 8 8 0.928 0.928 0.928 0.00790 0.920
Case 4 99 140 12 8 0.925 0.892 0.908 0.00823 0.900
Case 5 101 140 10 8 0.927 0.910 0.918 0.0127 0.841
Case 6 97 140 14 8 0.924 0.874 0.898 0.0123 0.826
Case 7 82 129 29 19 0.812 0.739 0.774 0.0224 0.811

removed from the DB (like 2 other buildings). MFs show
that it is caused by the absence of cast shadow (because
of high vegetation surrounding the house), the absence
of noticeable contrast in SAR image and the absence of
linear boundaries.

• Case (c) corresponds to a false building accepted in the
DB (like 2 other false buildings). The polygon is located
in a heterogeneous region, close to edges and linear
boundaries due to the road. Note that the belief value
of the Building set is the same than for the previous
case. However, this case is accepted thanks to its high
plausibility value, due to the high uncertainty of most
features.

• Case (d) corresponds to a true building that has been
accepted with a high value of conflict. As explained
previously, the conflict is an interesting byproduct of
the Dempster-Shafer evidence theory. Conflict denotes an
error in the model, or a problem of feature reliability.
In this case, the building is high and projects a large
shadow. However, in the optical image, its radiometry
is very close to the radiometry of the adjacent road.
Consequently, edges between the building and the road
are not detected by the edge detector. The polygon is
considered as located far from edges, and a conflict
appears between the features “shadow” and “edges”. For
this situation, a human operator should be alerted to
process himself complex cases that do not correspond
to the model. Indeed risks to have a wrong automatic
decision in those cases is high.

• Case (e) corresponds to a small house, correctly kept
in the DB. As this house is very low, its shadow is
not visible. Moreover in the SAR image, dimensions of
the house are too small to present a significant contrast
between the layover and the shadow area. However, this
house contrasts with its neighborhood, linear boundaries
are present and it contains no vegetation. So even if the
belief of the Building set is equal to 0, the plausibility is
high enough to be kept in the DB.

• Case (f) corresponds to a false building correctly removed
from the DB (like 144 other false buildings). The building
hypothesis has been positioned in a parking lot. So it con-
tains no vegetation however the outline is far from edges,
it does not project a shadow, has no linear boundaries, and

does not present a contrast in the SAR image. Thus the
plausibility of the Building set is low and the object has
been rejected.

The evaluation of the database verification with the Haiti
dataset is presented in Table IV. The DB was composed of 100
true buildings and 50 false buildings created manually. Results
presented in Table IV confirm the ability of the processing
chain to perform the DB verification in various environments.
Fig. 8 represents accepted and rejected building hypotheses
for the third case (a panchromatic 60cm resolution QuickBird
image and a 1m resolution TerraSAR-X image). This figure
shows that most false negative buildings are very small. Their
primitives are hard to detect, even in a 60cm resolution image.
False negative objects are located near linear edges. As in
this scenario (Case 3) the multispectral information is not
available, the presence of vegetation can not be used to reject
building hypotheses located over a vegetated area.

B. Building detection

The previously checked DB was finally used for parameter
optimization. To evaluate the detection of new buildings, we
do not use this DB anymore. Indeed, in an operational use of
this chain, we could try to detect buildings that are not in the
DB. However, this number of buildings is very small after the
DB verification. To have more representative results, we have
considered an empty DB. In this case, the ideal goal of the
chain is to detect all buildings in the images, i.e., to create the
DB. In this step, we consider polygons provided by the multi-
scale segmentation of the optical image. These polygons are
processed similarly to DB objects, as detailed in the previous
part.

Results are presented in Fig. 9 for the six first cases
related to the Toulouse dataset described previously. The case
where only a SAR image is available has not been considered
here because there was no building extraction method from
SAR images available in the free image processing library
Orfeo Toolbox. The object level evaluation is represented with
precision-recall curves in Fig. 9(a). The pixel level evaluation
is represented in Fig. 9(b). These curves are obtained by
changing the value of the threshold T defined in Eq. 5.
Curves shown in Fig. 9 confirm that the availability of a SAR
image slightly improves results. Moreover, Fig. 9(a) shows that
contrary to the DB verification, building detection is performed
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TABLE III
SIMULATION RESULTS.

Cases (a) (b) (c) (d) (e) (f)
Status true positive false negative false positive true positive true positive true negative

Optical image

Extracted primitives

SAR image

m(Shadow) 0.74 0 0 0.67 0 0
Shadow m(Shadow) 0 0.39 0.41 0 0.30 0.48

m(Θ) 0.26 0.61 0.59 0.33 0.70 0.52

m(Linear bnd.) 0.81 0 0.11 0.81 0.81 0
Linear boundary m(Linear bnd.) 0 0.38 0 0 0 0.12

m(Θ) 0.19 0.62 0.89 0.19 0.19 0.88

m(Edges) 0.25 0.46 0 0 0.51 0
Edges m(Edges) 0 0 0.03 0.81 0 0.71

m(Θ) 0.75 0.54 0.97 0.19 0.49 0.29

m(No veg.) 0.71 0.55 0 0.73 0.70 0.70
No vegetation m(No veg.) 0 0 0.09 0 0 0

m(Θ) 0.29 0.45 0.91 0.27 0.30 0.30

m(SAR cont.) 0.12 0 0 0.61 0 0
SAR contrast m(SAR cont.) 0 0.11 0.82 0 0.21 0.36

m(Θ) 0.88 0.89 0.18 0.39 0.79 0.64

Conflict 0 0 0 0.13 0 0
Bel(building) 0.73 0 0 0.78 0 0
Pl(building) 1 0.38 0.53 0.90 0.70 0.13

Decision 0.87 0.19 0.27 0.84 0.35 0.067

TABLE IV
DB VERIFICATION RESULTS USING HAITI DATASET.

Scenario Object level evaluation Pixel level evaluation
TP TN FN FP Precision Recall F-measure FAR DR

Case 1 97 48 3 2 0.980 0.970 0.975 0.00738 0.967
Case 2 97 47 3 3 0.970 0.970 0.970 0.00762 0.967
Case 3 93 46 7 4 0.959 0.930 0.944 0.00668 0.954
Case 4 93 45 7 5 0.949 0.930 0.939 0.00923 0.954
Case 5 79 34 21 16 0.832 0.790 0.810 0.0220 0.824

better with a 70cm panchromatic image than with a 2.5m
multispectral image. In the building detection step, the spectral
information seems more important than the spatial resolution.
This is due to the segmentation step, which is used to generate

building hypotheses. A good delineation of buildings is hard
to achieve with the segmentation of a panchromatic image.
Results show that for the first case, at pixel level, almost 70%
of building pixels are detected for only 2% of false alarm. This
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Fig. 8. Result of DB verification with the Haiti dataset for the case 3, with
the following colors: TP (in green): 93 buildings correctly accepted, FN (in
red): 7 buildings wrongly rejected, FP (in blue): 4 objects wrongly accepted
and TN (in white): 46 objects correctly rejected.

result corresponds to a precision of 72% and a recall of 62%.
Detected buildings for this result are represented in Fig. 10.
Results projected on the optical image (Fig. Fig. 10(a)) and
on the SAR image (Fig. 10(b)) highlight that small houses are
hard to detect. When buildings are correctly segmented in the
optical image, results are very close to those obtained in the
DB verification step. It corresponds to buildings that present
a high contrast with their neighborhood. On the contrary, Fig.
10(a) shows that some large buildings whose radiometry is
close to the adjacent road are not correctly detected. This is
due to the problem of segmentation. Indeed, at a coarse scale,
those buildings are merged with the adjacent road. However
at a fine scale, they are divided into small regions, which do
not verify characteristics of a building.

VI. CONCLUSION

This paper described a generic processing chain to up-
date/create a cartographic DB with SAR and optical input
images. Our results showed that the chain can process images
in a large range of resolution (tested at 0.6m and 2.5m
resolution for the optical image and at 1m for the SAR
image). The chosen fusion framework was well adapted to
the representation of feature imprecision. New features can be
easily included in the proposed chain to improve the building
detection. A score for each building hypothesis based on belief
and plausibility gave a confidence value for each DB element.
It also allowed a human expert to focus only on complex
cases while simple elements where processed automatically.
Future work will consist of analyzing these complex cases
to extract new features able to discriminate these elements.
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Fig. 9. Building detection: evaluation at object level with Precision-Recall
curves (a) and at pixel level with ROC curves (b)

For instance new features could characterize the shape of
segmented regions in the optical image. This will be useful to
discriminate buildings and vegetation if just a panchromatic
image is available. A similar processing chain is currently un-
der investigation to perform the update of road DBs. Finally, it
is interesting to mention that the proposed building processing
chain was implemented using CNES ORFEO Toolbox free
software http://www.orfeo-toolbox.org.
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(a)

(b)

Fig. 10. Building detection without DB: building outlines projected on the
optical image (a) and on the SAR image (b)

REFERENCES

[1] C. A. Lin and R. Nevatia, “Building detection and description from
a single intensity image,” Computer Vision and Image Understanding,
vol. 72, no. 2, pp. 101–121, Nov. 1998.

[2] A. Katartzis and H. Sahli, “A stochastic framework for the identification
of building rooftops using a single remote sensing image,” IEEE Trans.
Geosci. Remote Sens., vol. 46, no. 1, pp. 259–271, Jan. 2008.

[3] Y. Wei, Z. Zhao, and J. Song, “Urban building extraction from
high-resolution satellite panchromatic image using clustering and edge
detection,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Anchorage, Alaska, USA, Sep. 2004.

[4] Z. J. Liu, J. Wang, and W. P. Liu, “Building extraction from high
resolution imagery based on multi-scale object oriented classification
and probabilistic Hough transform,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), Seoul, South Korea, Jul. 2005.

[5] L. Wei and V. Prinet, “Building detection from high-resolution satellite
image using probability model,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), Seoul, South Korea, Jul. 2005.

[6] S. Muller and D. W. Zaum, “Robust building detection in aerial
images,” in International Archives of Photogrammetry and Remote
Sensing (IAPRS), Vienna, Austria, Aug. 2005.

[7] B. Sirmacek and C. Unsalan, “Building detection from aerial images
using invariant color features and shadow information,” in 23rd Inter-
national Symposium on Computer and Information Sciences, ISCIS ’08,
Oct. 2008, pp. 1–5.

[8] T. Bailloeul, V. Prinet, B. Serra, P. Marthon, P. Chen, and H. Zhang,
“Urban building land use change mapping from high resolution satellite
imagery, active contours and Hough voting,” in Proc. 9th International
Symposium on Physical Measurements and Signature in Remote Sensing
(ISPMSRS), Beijing, China, 2005.

[9] O. Aytekin, I. Ulusoy, E. Z. Abacioglu, and E. Gokcay, “Building detec-
tion in high resolution remotely sensed images based on morphological
operators,” in 4th International Conference on Recent Advances in Space
Technologies, RAST ’09, Jun. 2009, pp. 376–379.

[10] S. Lefevre, J. Weber, and D. Sheeren, “Automatic building extraction in
VHR images using advanced morphological operators,” in IEEE/ISPRS
Joint Workshop on Remote Sensing and Data Fusion over Urban Areas
(URBAN), Paris, France, Apr. 2007.

[11] H. Sportouche, F. Tupin, and L. Denise, “Building extraction and 3D
reconstruction in urban areas from high-resolution optical and SAR
imagery,” in Urban Remote Sensing Event, Shanghai, China, May 2009.

[12] K. Karantzalos and N. Paragios, “Recognition-driven two-dimensional
competing priors toward automatic and accurate building detection,”
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 133–144, Jan.
2009.

[13] B. Sirmacek and C. Unsalan, “Urban-area and building detection using
SIFT keypoints and graph theory,” IEEE Trans. Geosci. Remote Sens.,
vol. 47, no. 4, pp. 1156–1167, Apr. 2009.

[14] T. Kim and J. P. Muller, “Development of a graph-based approach for
building detection,” Image Vis. Comput., vol. 17, no. 1, pp. 3–17, Jan.
1999.

[15] M. Quartulli and M. Datcu, “Information extraction from high resolution
SAR data for urban scene understanding,” in Proc. 2nd GRSS/ISPRS
Joint workshop on data fusion and remote sensing over urban areas
(URBAN 2003), 2003, pp. 115–119.

[16] M. Quartulli and M. Datcu, “Stochastic geometrical modeling for built-
up area understanding from a single SAR intensity image with meter
resolution,” IEEE Trans. Geosci. Remote Sens., vol. 42, pp. 1996–2003,
2004.

[17] C. Tison, F. Tupin, and H. Maitre, “Retrieval of building shapes from
shadows in high resolution SAR interferometric images,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp. (IGARSS), Anchorage, Alaska, USA,
Sep. 2004, pp. 1788–1791.

[18] P. Gamba, B. Houshmand, and M. Saccani, “Detection and extraction of
buildings from interferometric SAR data,” IEEE Trans. Geosci. Remote
Sens., vol. 38, no. 1, pp. 611–617, Jan. 2000.

[19] A. Thiele, E. Cadario, K. Schulz, U. Thoennessen, and U. Soergel,
“Building recognition from multi-aspect high-resolution InSAR data in
urban areas,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp.
3583–3593, Nov. 2007.

[20] A. J. Bennett and D. Blacknell, “The extraction of building dimensions
from high resolution SAR imagery,” in Proceedings of the International
Radar Conference, Sep. 2003, pp. 182–187.

[21] F. Tupin and M. Roux, “Detection of building outlines based on the
fusion of SAR and optical features,” ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 58, no. 1, pp. 71–82, Jun. 2003.

[22] V. Amberg, M. Spigai, M. Coulon, and P. Marthon, “Improvement
of road extraction in high resolution SAR data by a context-based
approach,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Seoul, South Korea, Jul. 2005.

[23] D. Comaniciu and P. Meer, “Mean shift analysis and applications,”
in The Proceedings of the Seventh IEEE International Conference on
Computer Vision, Kerkyra, Greece, 1999.

[24] D. Massonnet and J. C. Souyris, Imaging with synthetic aperture radar,
chapter 3, pp. 165–167, CRC Press, Boca Raton, FL, 2008.

[25] K. S. Gudmundsson and F. Cagatin, “Complex shadow extraction,” in
International Society for Optical Engineering (SPIE), San Diego, CA ,
USA, Aug. 2008, vol. 7072, pp. 707211.1–707211.10.

[26] H. T. Guo, Y. Zhang, J. Lu, and G. W. Jin, “Research on the building
shadow extraction and elimination method,” in International Archives
of Photogrammetry and Remote Sensing (IAPRS), Beijing, China, 2008,
pp. 569–574.

[27] R. Grompone Von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall,
“On straight line segment detection,” J. Math. Imaging Vis., vol. 32, no.
3, pp. 313–347, 2008.

232



12

[28] C. J. Tucker, “Red and photographic infrared linear combinations for
monitoring vegetation,” Remote Sensing of Environment, pp. 127–150,
1979.

[29] P. E. Danielsson, “Euclidean distance mapping,” Computer Graphics
and Image Processing, vol. 14, 1980.

[30] R. Duda and P. Hart, Pattern Classification and Scene Analysis, pp.
98–105, John Wiley and Sons, 1973.

[31] P. Smets, “What is Dempster-Shafer’s model?,” in Advances in the
Dempster-Shafer theory of evidence, pp. 5–34. John Wiley & Sons, Inc.,
New York, USA, 1994.

[32] D. Dubois and H. Prade, “Possibility theory, probability theory and
multiple-valued logics: A clarification,” Annals of Mathematics and
Artificial Intelligence, vol. 32, no. 1-4, pp. 35–66, 2001.

[33] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy
Sets Syst., vol. 100, pp. 9–34, 1999.

[34] F. Tupin, I. Bloch, and H. Maitre, “A first step toward automatic
interpretation of SAR images using evidential fusion of several structure
detectors,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1327–
1343, May 1999.

[35] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” The Computer Journal, vol. 7, no. 4, pp. 308–313, Jan. 1965.

[36] J. Davis and M. Goadrich, “The relationship between precision-recall
and ROC curves,” in ICML ’06: Proceedings of the 23rd international
conference on Machine learning, New York, NY, USA, 2006, pp. 233–
240, ACM.

Vincent Poulain was born in Dieppe, France, in
1983. He received the Engineer degree in electrical
engineering and signal processing from ENSEEIHT,
Toulouse, France, in 2007 and the Ph.D. degree
in image processing in 2010 from the National
Polytechnic Institute of Toulouse, France. He joined
Thales Group in 2010 where he is currently working
in the field of remote sensing image processing.

Jordi Inglada received the Telecommunications En-
gineer degree from both the Universitat Politècnica
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tionale Supérieure des Télécommunications de Bre-
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Remote sensing processing: from multicore to GPU
Emmanuel Christophe, Member, IEEE, Julien Michel, and Jordi Inglada, Member, IEEE

Abstract—As the amount of data and the complexity of the
processing rise, the demand for processing power in remote
sensing applications is increasing. The processing speed is a
critical aspect to enable a productive interaction between the
human operator and the machine in order to achieve ever more
complex tasks satisfactorily. Graphic processing units (GPU)
are good candidates to speed up some tasks. With the recent
developments, programing these devices became very simple.
However, one source of complexity is on the frontier of this
hardware: how to handle an image that does not have a
convenient size as a power of 2, how to handle an image that is
too big to fit the GPU memory? This paper presents a framework
that has proven to be efficient with standard implementations of
image processing algorithms and it is demonstrated that it also
enables a rapid development of GPU adaptations. Several cases
from the simplest to the more complex are detailed and illustrate
speedups of up to 400 times.

Index Terms—GPU, CUDA, OpenCL, implementation

I. INTRODUCTION

THE amount of data acquired by imaging satellites has
been growing steadily in recent years. There is a rapidly

increasing number of applications that benefit from the decline
in prices and the easier access to such data. With this prolifer-
ation of data, relying on humans to do most of the high level
interpretation tasks is no longer possible. Some (but not all)
advanced tasks need to be processed automatically. However,
these tasks are more complex, thus raising the computational
power required.

As highlighted in an insightful report from Berkeley [1], the
increase in computational power for the coming years goes
through a parallel approach. High Performance Computing
(HPC) is a natural solution to provide the computational power
required. There are several approaches to HPC: clusters, grids
or clouds are some examples. However, we chose here to focus
on desktop HPC with the use of graphics processing units
(GPU). The idea is to bring the processing power as close as
possible to the final user to enable a better human-algorithm
interaction.

It is now possible to use GPUs to do general purpose
processing. Benefiting from investment from the movie and
gaming industries [2], the processing power of GPUs has
increased dramatically. They have evolved in a different direc-
tion than the general purpose central processing units (CPU).
They harbor hundreds of processing units that are able to work
at the same time. CPUs and GPUs rely on different trade-offs
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regarding the amount of cache memory versus the number of
processing units.

To benefit from these hundreds of processing units, the
inherent parallelism of the algorithms needs to be exposed.
Often in the literature, the focus is on the implementation of
the core algorithm. However, one critical difficulty arises from
boundary conditions (when the number of pixels in the image
is not a convenient multiple) and also from the data size that
often cannot be kept in the hardware memory in one go (thus
requiring several passes to reach the final result).

When designing a library to benefit from the capabilities of
GPUs, one has to think of both the final user of the program
and the developer who is going to write new programs. For
the former, it is important to keep him isolated from these
implementation details: the program should work for any
image size on any hardware. The latter will benefit from a
framework to simplify the nitty-gritty mechanisms so that he
can focus on performances.

The aim of this paper is to present a framework enabling
an easier implementation of the GPU kernel for some parts
of a global remote sensing image processing pipeline. The
framework is available as open source software in the Orfeo
Toolbox library [3].

The Orfeo Toolbox (OTB) is an open source library de-
veloped by CNES (the French Space Agency). It contains nu-
merous algorithms for preprocessing as well as for information
extraction from satellite images [4].

One of the main objectives of the Orfeo Toolbox (OTB)
is to provide a strong and robust software architecture to
facilitate the scalability of newly implemented algorithms
and to relieve (at least partially) the researcher from such
concerns. The processing model for OTB has its roots in the
Insight Toolkit [5] and has been proven to be effective for
remote sensing images as well as for medical images. The
general architecture of OTB is described in section II-A and
in section II-B we describe how it can be used to exploit the
GPU processing capabilities.

In section III, several examples of implementation with
increasing complexity are described and show improvement
ranging from zero to 400 time faster than the comparable CPU
implementation.

Section IV discusses some of the perspectives that arise
from such a speedup in the way we design and we work with
algorithms.

Finally, V concludes presenting some directions for further
improvements.

II. PROBLEM STATEMENT

This section presents the main issues related to the pro-
cessing of remote sensing images: scalability. There are two
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dimensions to this problem: the size of the data and the time
required for processing. A significant bottleneck for the use
of new algorithms is the jump from toy image examples to
real satellite images. The first issue is related to the size
of the image which cannot be held into memory any more
(section II-A) and the second is related to the computation
time and how to benefit from multiple computation units as
commonly found in CPUs and GPUs (section II-B). Even if
those two problems are related, they play a part at different
levels.

A. Image size scalability: streaming

The sheer size of satellite images – several gigabytes –
makes processing by usual methods inapplicable on standard
computers. It is not desirable or possible to load the entire
image into memory before doing any processing. In this
situation, it is necessary to load only part of the image and
process it before saving the result to the disk and proceeding
to the next part. This corresponds to the concept of on-the-flow
processing.

Remote sensing processing can be seen as a chain of events
or steps that lead to a final output [6]. Each of these steps is
generally independent from the following ones and generally
focuses on a particular domain. For example, the image can be
radiometrically corrected to compensate for the atmospheric
effects, indices (such as NDVI) computed, before an object
extraction based on these indexes takes place. The typical
processing chain will process the whole image for each step,
returning the final result after everything is done.

For some processing chains, iterations between the different
steps are required to find the correct set of parameters. Due
to the variability of satellite images and the variety of the
tasks that need to be performed, fully automated tasks are
rare. Humans are still an important part of the loop.

In these conditions, it is valuable to be able to provide some
feedback quickly for only parts of the image and reprocess
this part for a different set of parameters. Better yet if only
the modified steps are reprocessed and not the whole chain;
this is the concept of on-demand processing.

These concepts are linked in the sense that both rely on
the ability to process only one part of the data. In the case
of simple algorithms, this is quite easy: the input is just split
into different non-overlapping pieces that are processed one
by one. But most algorithms do consider the neighborhood
of each pixel. As a consequence, in most cases, the data will
have to be split into partially overlapping pieces.

The objective is to obtain the same result as the original
algorithm as if the processing was done in one go. Depending
on the algorithm, this is unfortunately not always possible.

In the Orfeo Toolbox, the processing elements are organized
in the library as filters. Filters perform operations such as
reading and writing the data, but also processing, e.g. linear fil-
tering, thresholding or classification. Writing a new application
(or a new processing chain) consists of plugging a few filters
together to create a processing pipeline. As highlighted above,
in most cases, the whole image cannot be held in memory at
once and a different processing model is required.

Figure 1 illustrates the process on a simple example. In this
case, four filters are connected together:

• a reader that loads the image, or part of the image in
memory from the file on disk;

• a filter which carries out a local processing that does not
require access to neighboring pixels (a simple threshold
for example), the processing can happen on CPU or GPU;

• a filter that requires the value of neighboring pixels to
compute the value of a given pixel (a convolution filter
is a typical example), the processing can happen on CPU
or GPU;

• a writer to output the resulting image in memory into a
file on disk, note that the file could be written in several
steps.

We will illustrate on this example how it is possible to
compute part of the image in the whole pipeline, occurring
only a minimal computation overhead.

Once all the filters are connected together and the pipeline
is created as in Fig. 1 (a), the processing is started by a
call on the last filter of the pipeline, which is the writer
in our example. This filter requests its input to provide the
information regarding the size of the image it will produce
(Fig. 1 (b)). The reader gets the information by reading the
meta-data of the file and the information is propagated through
the pipeline (Fig. 1 (c)). Eventually, filters can modify this
information, depending on the processing they apply on their
input.

Once the writer has the information regarding the size
of the data it has to produce, it can compute the splitting
strategy: depending on the maximum memory specification,
it will select only a small area of the image to request to
its input filter. In Figure 1 (d), this area is represented by
the red rectangle. The writer requests this area to its input:
filter 2. This filter needs the value of the neighboring pixels
of each pixel to be able to process its output. For the pixels in
the middle of the region, this is not a problem, however, the
region needs to be expanded to accommodate the need of the
pixels at the border. This extension is represented by the blue
rectangle in Figure 1 (d).

Here, there are two different cases: either the value is part
of the image and can be obtained, or it is outside of the image
area. In the first case (the bottom line in our example), the
region is simply extended and the value will be generated
by the input filter. If the value is outside of the image (top,
left and right of the red region in our example), a strategy
is necessary to create this value. This is handled at the filter
level and several strategies (boundary conditions) are available:
constant value, mirror, zero flux Neumann. In section III-B,
we will see how this strategy can ease the constraints on the
GPU implementation.

Once the request reaches the reader, which is the first filter
of our pipeline, it can generate the requested area from the
file and pass it to the next filter (Fig. 1 (e)). Once the region
reaches the writer, it is written on the disk and the process
continues with the next tile (Fig. 1 (f)).

This process relies on the capability of each filter to
determine the size of the input needed to produce the output
required by the downstream filter. Some specific algorithms
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(a) Pipeline (processing chain) Reader Filter 1 Filter 2 Writer

(b) Size request
Request informationRequest informationRequest information

(c) Size propagation
Output informations Output informations Output informations

(d) Output request

(e) Request completion

(f) Next tile: (d)-(e) again

Fig. 1. Streaming model for OTB: illustration on a simple pipeline with two processing filters between a reader and a writer. One filter (filter 1) does pixel
by pixel processing, while the other (filter 2) does a neighborhood processing.

cannot be rigorously implemented to work only on extracts
of the image: Markov fields for example where the iterations
introduce potential long range dependencies between pixels.
In these situations, an approximation can usually be obtained.
Note that the processing of the different tiles is independent
and does not use common memory. It could ideally be coupled
with distributing processing techniques (cluster or grids) where
each node would process a tile, but this point is outside the
scope of this paper.

The process is illustrated above in great detail, but it is
worth mentioning that the user of the library does not need to
understand this mechanism. Indeed, he may not even need to
be aware of it. The developer of new filters, does not need
to fully understand it, having a knowledge of the relevant
customization points is sufficient. This design will appear to
be critical in the context of the use of GPU where the memory
is more limited.

B. Processing unit scalability: multithreading
1) Short review of CPU vs GPU architecture: Several

architectures are available to enable parallel processing of data.
The most common are SIMD and MIMD (using Flynn’s tax-
onomy [7]). SIMD (Single Instruction, Multiple Data streams)
where the same set of instruction is applied on several data
streams is particularly suited to digital image processing.
SIMD is available in CPU and enable to apply a single oper-
ation on multiple data at once. MIMD (Multiple Instruction,
Multiple Data streams) corresponds to using several cores in
a single die. These cores are able to execute independent
instructions on different data.

Recent CPU combines several parallelization techniques to
increase performances while giving the impression that they

work sequentially: branch prediction, out-of-order execution,
superscalar. All these techniques increase the complexity of
the CPU, limiting the number of CPUs that can be included
on a single chip.

On the other hand, GPUs keep each processing unit simple
but pack thousands of them on the chip. One of the critical
difference is the lower amount of cache memory available.
As a consequence, the GPU will work well when the level
of data parallelism is high and enable masking the latency of
each thread.

If we omit some of the details above and compare how CPU
and GPU will process the pixels of the image: we can consider
that the CPU will process each pixel sequentially but very fast
while the GPU will process them slower but a whole lot of
them at a time.

2) The rise of multicore CPUs: As the frequency of pro-
cessors is reaching limits due to heating issues, advances in
processing capabilities of recent CPUs are geared towards the
increase in the number of cores [1], [8]. Recent CPUs are able
to handle 8 to 12 threads simultaneously.

However, designing an application to benefit from these
multicore architectures is not straightforward. The problem is
to be able to split the data into different entities that can be
processed simultaneously.

In section II-A, the main issue was limiting the size of
the image to load into memory; here it is to draw on the
availability of several processors. One common point between
the two problems is that they rely on the possibility to process
an extract of the data at a time. A major difference is that
multithreading in the context of multicores will have access
to shared memory between the cores. In the case of streaming,
there is no shared memory between the tiles.
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In OTB, the multithreading is done on a per filter basis with
a portable implementation using one of the multithreading
library available in the system (sproc, pthreads or Win32
Threads). In the previous example of Figure 1, let’s consider
for example that filter 1 is multithreaded. In that case, when
processing the requested blue region in step (e) of Figure 1,
the blue region is going to be subdivided into N regions each
to be processed by one thread.

This ability to process a given region with multiple threads
(around 10 in the case of the CPU) needs to be extended to the
few thousands threads required to efficiently utilize a GPU [9].

3) Switching to GPUs: GPUs first appear in the 80s as
a hardware dedicated to graphics processing. Over the next
decades, they progressively increase their capabilities to 3D
processing. These chips are highly optimized for graphics re-
lated operations: floating point computation, massively parallel
computation. The parallel computation is a critical difference
with the traditional CPUs architecture. The reason is that
the pixels to be displayed can be computed independently.
When switching one algorithm from CPUs to GPUs, the major
challenge is to take advantage of this parallel organization.

Switching the programming model from sequential to par-
allel is not an easy task. Most of the time, the program
needs to be rewritten to expose large amount of fine-grained
parallelism, enabling the use of thousands of concurrent
threads. The part that requires parallelization needs to be
clearly exposed and defined by proper profiling. Potential gains
attainable by optimizing part of the program are limited by
Amdahl’s law [10]:

speedup =
1

(1− rp) +
rp
s

(1)

where rp is the proportion of the program being parallelized
and s the speedup obtained on this particular part. For exam-
ple, when improving a part of a program that represent 50%
of the total execution time (pr = 0.5), even with an infinite
speedup (s =∞), the overall speedup is only 2.

Nevertheless, the performance evolution between CPUs and
GPUs justifies the effort. There is no perfect measure of
comparison between CPUs and GPUs. Indeed, they are highly
optimized for a specific class of problems. However, one
indication of the evolution is the number of floating point
operations per second (Flops/s). Fig. 2 presents the evolution
of the Nvidia GPUs compared with the Intel CPUs over the
last decade. One important provision is that these numbers are
usually provided for double precision computation for CPUs
and single precision computation for GPUs. GPUs are known
to be significantly slower when double precision computation
is required. However, recent GPUs address this issue. From
these data, we can see that the GPUs are doubling their
processing power every 12 months while CPUs do it in 18
months (according to Moore’s law).

Until recently, benefiting from the GPU computing power
required the developer to map the problem in terms of graphic
primitives (using texture operations). This approach led some
people to develop frameworks to alleviate this complexity. An
example is presented in [11] to help process hyperspectral im-
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Fig. 2. Evolution of Intel CPUs and Nvidia GPUs over the last decade
(source: Intel export compliance metric, Nvidia specifications and Wikipedia)

ages. But mapping the problem in terms of graphic primitives
remains awkward.

With the release of the first version of CUDA in 2007 and
OpenCL in 2009, the programming model for GPUs is greatly
simplified. CUDA is the language introduced by Nvidia on its
G80 GPU series. The language is specific to one vendor and
its hardware. However it benefits from several years of usage
and, the availability of numerous libraries are increasing its
popularity.

OpenCL was developed by a consortium and released in
2009. It aims at supporting more hardware and to provide
a standard for general purpose parallel programming across
CPUs, GPUs and other processors, giving software developers
portable and efficient access to the power of these heteroge-
neous processing platforms [12].

Both Cuda and OpenCL use the concept of kernel. A kernel
is series of operations that will typically by applied to one
pixel. Each kernel will be handled by one of the numerous
GPU processors. The flow of pixels forms a stream that will be
processed by the kernel. This abstraction relieve the developer
from the management tasks.

With these two languages that enable C-like programming,
the learning curve to benefit from the GPU is significantly
flattened [13] and several papers demonstrate good implemen-
tations for a wide range of problems such as for graph [14],
sorting [9], and general purpose algorithms [15].

Recently, a paper from Intel researchers questions the
100X gains presented in several papers comparing CPU and
GPU [16]. In their paper, Intel engineers use their extensive
knowledge of the CPU architecture to draw the most out of
it. Depending on the specific problem at hand, they conclude
with a speedup for the GPU implementation over the CPU
implementation ranging from 0 to 15. We have to note that
the GPU cost is about half of the CPU in this particular study.

A comparison between OpenCL and Cuda is done in details
in [17]. The table I summarizes some of the different trade-
offs between CUDA and OpenCL. The kernel code (the part of
the program which implements the computations on the GPU)
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is almost identical in both cases which means that investing
efforts into one technology will also benefit the other in case
a change is required in the future. The setup of the kernel
(the part of the code which prepares the data and transfers it
to the processing units) is more complicated in the OpenCL
case as there is some overhead due to the support for more
heterogeneous hardware and for the compilation of the kernel
during execution. However, this increased complexity enables
more portability as OpenCL targets CPUs and GPUs alike.
Concerning the availability of existing code, CUDA benefits
from a head start of a few years compared to OpenCL and
from many libraries heavily optimized for most common tasks
(FFT, linear algebra. . . ).

In term of performances, this difference in development
stage has an impact. Earlier study [17] concludes that the
OpenCL implementation is 13 to 63% slower. Figure 10
compares the performances of equivalent implementations
using CUDA and OpenCL on the same hardware (OpenCL
about 45% slower).

CUDA OpenCL
Kernel code Simple Simple
Kernel setup Simple More complicated
Portability Low High
Library availability High Low

TABLE I
COMPARISON BETWEEN CUDA AND OPENCL

GPU memory is more limited than CPU memory. As several
types of memory are available special attention to which
memory is used is required for further optimizations.

In the case studies described in the next section, the amount
of data to be processed can be above the memory size. Another
issue appears related to the size of the images. In most cases,
each thread of the GPU is going to process one pixel. Due to
the hardware architecture, threads need to be gathered into
thread blocks, forming, for example, a group of 16 × 16
threads. This is fine if the image size is a multiple of 16. When
processing regular images, this is unlikely, and this problem
needs to be accounted for.

It can be handled at the GPU level, but it usually involves
branching conditions. If possible, it is better to handle it before
transferring the data to the GPU, making sure that the data size
is suitable (a multiple of 16 in the example above). Thankfully,
the pipeline model (Fig. 1) does just that: when the processing
requires some neighborhood information (a simple case is a
convolution), the pipeline is able to adapt the requested region
to ensure that the necessary data are available. To comply with
the GPU requirements, we just adapt this request to make sure
that the region size is a multiple of 16.

In the following examples, the size of the image is handled
as described in section II-A. The only modification, which fits
perfectly in the pipeline structure is how the filter is computing
the region required to produce the output.

III. CASE STUDIES OF GPU MIGRATION

In this section we introduce several examples of processing
algorithms in order to illustrate different trade-offs in terms of

memory size and computation complexity which will allow the
reader to get insight on the benefit of GPU-based approaches
and when it would be most profitably applied. We have
selected 3 algorithm categories which cover most of the steps
of a classical remote sensing image processing chain.

Relative performances are compared between the original
program on CPU using either a multithreaded implementation
or otherwise, and the same program running on GPU which
provides similar results. Outputs are compared to make sure
that no differences other than those due to the single precision
computation appears.

It is always a delicate task to compare programs using
their execution time as it depends heavily on the quality
of the implementation. Unlike what was done in the Intel’s
study [16], we do not push the implementation optimization
to the maximum, but instead choose to focus on good quality
implementation attainable with reasonable effort and hardware
knowledge by the typical remote sensing scientist. There is
probably room for improvement on the CPU side (using
SIMD) as well as on the GPU side (coalescing access).

The hardware is an Intel i7-920 with 6 GB of RAM, the
GPU is a Nvidia GTX-260 used purely for processing, the
display being handled by another card. In terms of software,
the C/C++ compiler gcc/g++ 4.4.3 is used with the version
3.0 of the CUDA toolkit for both CUDA and OpenCL simu-
lations. Compilation option used is -O3 which turn on all the
optimization available.

A. Pixel-based processing, a first naive example

The first category of algorithms refer to those that perform
operations on single pixels without the need of context. This
category can include any arithmetic or logical operation on
pixels such as simple additions and thresholdings or more
complex computations such as numerical solutions of equa-
tions where the pixel value is a parameter. This category also
includes pixel based classification such as maximum likeli-
hood, neural networks or SVM classifiers. Finally, another
interesting subset of algorithms for remote sensing image
processing which belong to this category are the coordinate
transformations used in image orthorectification (through sen-
sor models), map projection transforms and any analytical
model-based in preparation for image resampling.

As the data transfer from the CPU to the GPU is relatively
slow, the key factor in order to benefit from the GPU massively
parallel architecture will be the complexity of the pixel-
wise operation. In order to illustrate this, we have selected
2 classical algorithms.

1) Algorithm description: The first algorithm is the compu-
tation of the Normalized Difference Vegetation Index (NDVI)
[18] which is a radiometric index which combines the red (N )
and near infrared (NIR) reflectances in order to estimate the
amount of vegetation:

NDV I =
NIR−R
NIR+R

. (2)

The second algorithm is the spectral angle mapper (SAM),
which computes, for each pixel of the image p with nb bands,
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__global__ void ndviKernel(float* pix, float* ndvi,
int numBands, int indexRed, int indexNIR,
int imageWidth)

{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;

float nir = pix[numBands*(x + y*imageWidth)
+ indexNIR];

float red = pix[numBands*(x + y*imageWidth)
+ indexRed];

ndvi[x + y*imageWidth] = (nir - red)/(nir + red);
}

Fig. 3. Naive kernel example for NDVI: unfortunately, the amount of
processing for each pixel is too low to get any gain from GPU

the spectral angle with respect to a reference pixel r. The
spectral angle is defined as:

SA = arccos




nb∑

b=1

r(b).p(b)/

√√√√
nb∑

b=1

r(b)2
nb∑

b=1

p(b)2


 , (3)

b being the spectral band, r is the reference pixel and p
the current pixel. The interest of evaluating the SAM is that
its computation is more costly due to the square root and the
arccos function.

2) Implementation details: The straightforward way to im-
plement these pixel processing algorithms is to get each thread
of the GPU to process one pixel. In this case, the kernel is
very simple as shown in Fig. 3.

Unfortunately, in this case, the GPU processing appears to
be slower than the CPU by about 20% (Fig. 4). A quick
profiling of this case shows that the kernel spends about 92%
of its time for memory transfer and only 8% for the processing.
This shows clearly that the NDVI computation is too simple
to get any benefit by itself from the GPU architecture.

On the other hand, the computation cost for the spectral
angle (Eq. 3) is higher than the NDVI. In this case, we start to
see some gain from using the GPU, but it is not yet convincing
(Fig. 5): the GPU is faster than the CPU using one thread, but
comparable to the CPU fully using its 8 threads.

3) Results: Figure 4 shows the computation time for the
NDVI for image size from 1000 × 1000 to 6000 × 6000.
Due to the significance of the IO operations compared to
the computation, the execution time displays a large variance;
average timing and the standard deviation for these timings
on at least 20 runs are represented. As one can observe, the
NDVI computation is too simple to be a good candidate for
GPU optimization on its own. Actually, the GPU version is
slower than the CPU versions. However, the multithreaded
CPU implementation brings some benefit with respect to the
single-threaded one but the improvement is also limited and
much lower that the factor 8 expected.

Figure 5 shows the same kind of simulation for the spectral
angle computation. Here, the parallel implementations are
much more efficient than the single threaded one, but the
spectral angle is still too simple for the GPU implementation
to provide a speedup with respect to the CPU multithreaded
one.
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Fig. 4. Computation time for the NDVI for increasing image sizes: NDVI
is not a good candidate to benefit from a GPU implementation on its own.
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Fig. 5. Computation time for the spectral angle for image size from
1000 × 1000 to 6000 × 6000: there is some improvement over the CPU
implementation on a single thread, but it is still not sufficient to justify a
GPU implementation.

B. Neighborhood-based processing

The second category of algorithms we are interested in is
the ones which use a pixel and its close neighbors (on a regular
grid) in order to compute the output value for a single pixel.
This category includes many image processing tasks such as
linear filtering by convolution, but also non-linear filtering
(median, mathematical morphology), local statistics, etc.

Texture estimations using the Grey-Level Co-occurrence
Matrices (GLCM) are also in this category, but they are
more computationally intensive since 2 shifted neighborhoods
are used, so they are very interesting candidates for GPU
implementation.

1) Algorithm description: We choose here another partic-
ular case where the local computation is made using several
pixel neighbors: fine image correlation. This technique is used
for disparity map estimation between stereo image pairs [19].
Let I be the reference image and J be the secondary image,
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Reference Image Secondary Image

Fig. 6. Illustration of the fine correlation process

which are supposed to be roughly superimposable, one is
interested in finding the local shift (∆x,∆y) between small
image patches which maximizes the correlation coefficient:

ρI,J(∆x,∆y) =

∑
x,y
I(x, y)J(x+ ∆x, y + ∆y)

√∑
x,y
I(x, y)

∑
x,y
J(x+ ∆x, y + ∆y)

(4)

This processing is applied for every shift in a given explo-
ration area and for every pixel in the image (see Figure 6).

2) Implementation details: This particular problem of the
estimation of a disparity map by fine correlation poses several
issues for the implementation on GPUs and the adaptation is
not as straightforward as the previous examples. On the other
hand, the amount of computation per pixel is much greater
than in the previous cases, so the potential gain is significant.

An adaptation of a similar algorithm to perform the auto-
correlation of an image is given in [20], but the search window
size was specific to their problem and involved different trade-
offs.

The first question is which part of the processing should be
implemented on the GPU. After profiling the CPU version of
the algorithm, it appeared that 95% of the time was spent
in computing the correlation for each shift. Producing the
correlation map for each pixel seems to be the ideal part to
be implemented.

The second question concerns the degree of flexibility
required in the implementation. Of course, we do not want
any limit concerning the size of the image to be processed.
But given the streaming process described in II-A, it is not an
issue. However, we also do not want a restriction on the size
of the patch used to compute the local correlation or on the
size of the exploration window.

The approach chosen for this case is that each thread will
compute the correlation value corresponding to one displace-
ment. Each block of threads will compute the correlation map
for one pixel. Of course as there is no restriction in the size
of the search window, the number of possible displacements
for one pixel (which is computed by one thread block) can
be greater than the maximum number of threads in one
block (which is currently limited to 512). To go around this
limitation, when the window search size is too big, the whole
correlation map is computed through multiple kernel launches
with different parameters.
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Fig. 7. Computation time of the fine correlation for different hardware for
different search radius size and for a image size from 100×100 to 700×700
pixels: the GPU version is 8 to 12 times faster that the multithreaded CPU
version fully using 8 threads.

There is an issue with the matching window which can
extend outside of the image. One way to solve the problem is
to make costly checking for each access directly in the GPU
kernel. Here we avoid the issue altogether by using the strategy
presented in II-A which ensure that all accesses will be valid.

The final result (Fig. 7) shows a speedup of 8 to 12
times compared to the CPU implementation for the whole
fine registration process. The correlation computation is no
longer the limiting factor and further improvement would
require improving the interpolation process to find subpixel
displacements.

3) Results: Figure 7 shows the computation time for the
fine correlation for different image size and different radius
for the search windows. A search window of radius 25 means
that 2601 (51 × 51) different possible displacements will be
explored for each pixel. In all cases, the size of the patch
was fixed to 11 × 11 pixels. The CPU time corresponds to
the multithreaded version, making full use of the processor.
Here the difference between the GPU version and the CPU
version is significant. For example, a processing that takes
4 min 30 s on the GPU takes more than 51 min on the CPU.
It is worth noting that the correlation computation part, the
only one implemented on the GPU here, used to represent
95% of the total computation time. The execution time for this
part has been reduced by a factor of 20 and now represents
only 50% of the total computation time. To obtain significant
further improvements it is required to work on other part of
the computation such as the correlation map interpolation (cf.
Amdahl’s law in equation (1)).

C. Irregular or non-local processing

This third class of algorithms consists of the cases where
the pixels we are interested in are in irregular positions or
represent only a small percentage of the pixels of the image
and the computation to be performed is very demanding.
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In these cases, the amount of data to be transferred to the
processing unit is small and the computing cost is large.

In remote sensing image analysis, some examples of these
algorithms are: irregular interpolation by thin plate splines,
histogram kernel estimation, Voronoi/Delaunay triangulations
and vector object processing (operations on polygons or poly-
lines yielded by segmentation and detection algorithms).

1) Algorithm description: One example of such processing
is point density estimation. This program estimates the point
density for every point in an image for a given set of
points. Several applications use this density estimation: we can
mention point feature extraction such as SIFT [21], permanent
scatterers in SAR images [22], etc. One example of possible
output for this process is illustrated in Fig. 8.

The estimation is done using a Gaussian kernel as in Eq. (5)
where dp,h denotes the distance between the pixel p where the
density is computed and the point h of the set of points.

ρp =
1

2πσ2

∑

h

e
d2p,h

2σ2 (5)

This equation means that the density is spread around point
h following a Gaussian model.

Fig. 8. Example of possible output of a point density estimation: in this
example, the points correspond to SIFT detections. About 10000 points are
detected on this image.

The decision to optimize this problem was taken after
noticing that the CPU performances of the original version
of the program were not satisfying, taking hours to provide a
density map of permanent scatterers.

Another example is the learning step of SVM classifiers
[23]. As mentioned in section III-A, SVM classification be-
longs to pixel-based processing, since class prediction for a
given pixel is only a matter of a few scalar products with
support vectors. Prior to SVM classification, SVM learning is

the task of identifying these support vectors into a training set
and involves several iterations over a set of training examples
which can be located anywhere in an image. This makes the
SVM learning algorithm falls into the class of irregular of
algorithms.

2) Implementation details: For the density estimation ex-
ample, there are two different approaches to compute the final
image. One is to go through the set of points and for each
of them compute their impact on the whole image using an
accumulator. The other approach is to go through all pixels
and, for each of them, sum up the impact of all points in the
point set. Depending on the relative size of the image and the
point set, one or the other can be privileged in the case of
CPU implementation. The first one corresponds to a scatter
approach while the second one is a gather approach.

The gather approach is one where the computation of one
output pixel is done at once by a single computation unit,
gathering information from several positions from the input.
The scatter approach is the reverse, when input are accessed
once by a single computation unit and their impact is reported
to the relevant output pixel which works as an accumulator.

GPUs are more suited to the gather approach and this is
the one selected here: for each pixel, we go through the point
set and compute the impact of each point to this pixel. The
other advantage is that this approach is perfectly suitable for
the pipeline model described in the previous sections.

This simple approach, where one thread processes one pixel,
iterating over the list of points already provides an impressive
gain compared to the CPU version. However, using additional
features available from GPUs, additional performance gains
are possible.

The first improvement is to use the constant memory of the
GPU. Accesses to the constant memory are much faster when
they are synchronized between the threads. Constant memory
is the ideal candidate to store the point coordinates as they are
frequently accessed by each thread.

Another source of improvement is to factorize some com-
putations that are common to different threads, thus reducing
the total amount of computations to be performed. When
computing the distance between one point and one pixel,
the computation is done for the x component and the y
component. The y component will be the same for all the
points of a line. By using one thread to process not only one
point, but several points on the same line, this part of the
computation can be done only once. A trade-off has to be
made to keep the number of threads high enough to use all
the computation units of the GPU and not to use too many
registers (as that would reduce the number of threads that
can run concurrently). In the present example, each thread
processes 4 consecutive points on the same line.

In this case, as shown in Figure 10, the improvement over
the GPU is impressive: 130 times faster than the multithreaded
CPU version.

Regarding the SVM learning problem, the CPU implemen-
tation relies on LibSVM [24], a widely known library to
perform SVM classification and regression, while the GPU
version was handled by cuSVM [25], a CUDA implementation
of SVM restricted to regression and two-class classification
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__constant__ float pt_c[CHUNK_SIZE*2];

__global__ void pointDensityKernel(float* pix,
int numPoint, int originX, int originY,
float spacingX, float spacingY,
int imageWidth, int radiussq)

{
int x1 = blockIdx.x*blockDim.x*PIX_PER_THREAD

+ threadIdx.x;
int x2 = x1 + blockDim.x;
int x3 = x1 + 2*blockDim.x;
int x4 = x1 + 3*blockDim.x;
int y = blockIdx.y*blockDim.y + threadIdx.y;

float accum1 = 0.0f;
float accum2 = 0.0f;
float accum3 = 0.0f;
float accum4 = 0.0f;
for (int k = 0; k < numPoint; k++)
{

float ptX = pt_c[2 * k];
float ptY = pt_c[2 * k + 1];
float pixX1 = x1 * spacingX + originX;
float pixX2 = x2 * spacingX + originX;
float pixX3 = x3 * spacingX + originX;
float pixX4 = x4 * spacingX + originX;
float pixY = y * spacingY + originY;
float disty_sq = (ptY - pixY) * (ptY - pixY);
float distsq;
distsq = (ptX - pixX1) * (ptX - pixX1)

+ disty_sq;
accum1 += __expf(-distsq/radiussq/2);

distsq = (ptX - pixX2) * (ptX - pixX2)
+ disty_sq;

accum2 += __expf(-distsq/radiussq/2);

distsq = (ptX - pixX3) * (ptX - pixX3)
+ disty_sq;

accum3 += __expf(-distsq/radiussq/2);

distsq = (ptX - pixX4) * (ptX - pixX4)
+ disty_sq;

accum4 += __expf(-distsq/radiussq/2);
}
pix[x1+y*imageWidth] += accum1/NORMALIZATION;
pix[x2+y*imageWidth] += accum2/NORMALIZATION;
pix[x3+y*imageWidth] += accum3/NORMALIZATION;
pix[x4+y*imageWidth] += accum4/NORMALIZATION;

}

Fig. 9. CUDA kernel for the point density computation: each thread computes
the density value for 4 points of the same line simultaneously. The OpenCL
kernel is very similar.

with a Gaussian kernel. In this case, all that is needed is
to fit the LibSVM and cuSVM calls into the Orfeo Toolbox
framework. In each case, the learning and classification steps
are implemented in separated filters and the classification
filters are given streaming capabilities. Parameters from both
libraries are tuned to match results as closely as possible.

3) Results: Figure 10 presents the results obtained by the
implementation of the point density computation. Here, the
gain is so significant that a logarithm scale is used to show the
CPU and the GPU time on the same plot. The speedup from
the GPU version is about 130 times. For this particular case,
two implementations for CUDA and OpenCL are realized. It
appears that for this particular case the OpenCL implemen-
tation is about 45% slower than the CUDA implementation.
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Fig. 10. Computation time of the point density for different hardware for
different number of points for an image of 36 MPixels: the GPU version
is about 130 times faster that the multithreaded CPU version (Note that the
timing is in logarithm scale).

However, the gain compared to the CPU is still impressive,
and with respect to the CUDA implementation, there is the
advantage of supporting a wider range of hardware including
CPUs and GPUs. Computation speed improvements of such
an order of magnitude open a whole range of possibilities
where interactive processing becomes convenient. advantage
of supporting a wider range of hardware including CPUs
and GPUs. Such order of magnitude in computation speed
improvement opens a whole range of possibilities where
interactive processing becomes convenient.

Regarding the SVM learning and classification problem,
both CPU and GPU filters have been used to perform change
detection on a pair of registered SPOT5 images in the context
of a severe flooding event. This dataset contains 2320x4320
pixels with 3 spectral bands for each date. A training mask
of 62676 pixels denoting change and no-change areas was
used to train the SVM. The learning step took 572 seconds
with the CPU implementation, while only 1.35 seconds were
necessary for the GPU implementation to converge, which is
tremendously faster (more than 400 times), although we should
mention that the CPU version of the learning step is mono-
threaded in this case. As expected, being a simpler algorithm,
the classification step shows smaller time improvements, with
489 seconds for the multithreaded CPU version and 146
seconds for the GPU one – only about 3 times faster.

IV. DISCUSSION AND PERSPECTIVES

As we have seen in the previous sections, some classes
of algorithms can benefit tremendously from a GPU imple-
mentation. Typically, these algorithms can be identified as
algorithms that do mostly local processing (limited distance
impact) and intensive computation for each pixel. We have
seen for example that the SAM is at the lower bound in
terms of computation to make it valuable to implement on
GPU for an image with 4 bands (fig. 5). In that particular
case, the limit appears to be a few hundred operations (mainly
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due to the trigonometric function). Below this limit, the time
spent transferring the data from the CPU memory to the GPU
overcomes any benefit in the computation speed.

Above this limit, the benefits can be very important. In some
cases, they can be so important that they could change the way
the human interacts with the process. When the process takes
hours, or even minutes, it is not conceivable to have the user
sit down in front of the computer, waiting for the results. In
this case, the data will be processed from end to end and the
user will exploit the final result. If there is a need to adjust
some parameters, the data will be reprocessed.

One drawback of this classical scheme is that it tends to
limit the interactivity between the human and the algorithm.
When we reach a situation where we can process a screen
size area in about a second, it becomes possible to do the
processing in real time. In this situation, any modification of
any parameter will trigger immediate feedback: the user is
able to interact much more with the algorithm. The human
can become a real part of the processing chain.

This can lead to an improvement of the classic processing
chains in use, but it can also lead to the development of new
paradigms. One obvious example is the application of active
learning to remote sensing problems [26]. Benefiting from the
major speed-up brought by the GPU implementation of SVM
learning (see section III-C3), the training samples selection
step could change drastically: near real-time feedback on the
pertinence of selected samples and on primitive-wise confi-
dence of the classifier becomes achievable. Other common
remote sensing image processing tasks could benefit from
immediate quality feedback, such as image co-registration for
instance.

V. CONCLUSIONS

As demonstrated in this paper, adapting the most expensive
part of a processing pipeline to benefit from the processing
power of GPUs is quite simple. With a minimum investment
(hardware cost is around US$ 200, the software used here is
free and open source), performance gains can attain 10 to 400
times on the critical portion of the processing.

One of the main shortcomings, which is the relatively
slow computation in double precision – important for some
scientific computations – has been addressed by the new Fermi
architecture released by Nvidia in April 2010. We will defi-
nitely witness an increasing number of GPU implementations
for remote sensing processing algorithms in the near future.

Still, benefiting from this massive speed-up requires one
to carefully select those algorithms which fit well in the
GPU computing architecture, identify the critical sections to
optimize, and have a close look at how things are implemented.

All this complexity should remain hidden to the end-user,
which is exactly what the high level of abstraction provided
by the Orfeo Toolbox framework allows us to do. Further
improvements can be made in that direction by proposing a
mechanism to switch seamlessly from CPU to GPU versions
of algorithms depending on available hardware. Another in-
teresting perspective would be to run GPU-enabled filters on
GPU blades, which gather several GPU devices on a single
hardware.

The source code corresponding to the examples presented in
this paper used to generate the results is available for download
from the Orfeo Toolbox web site (http://www.orfeo-toolbox.
org/OTB-GPU). Most of it will be integrated in the upcoming
releases of the library.
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munications et Systèmes, Toulouse, France, where
he has been working on studies and developments
in the field of remote sensing image processing. He
is now with the Centre National d’Études Spatiales
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